[6SI-ariven development................ccoeeveeeeeennees

Test-Driven Development

Implementing
test-driven
database design
involves database
refactoring,
regression festing,
and continuous
integration.
Although technically
straightforward,
TDDD involves
cultural challenges
that slow its
adoption.

0740-7459/07/$25.00 © 2007 IEEE

Scott W. Ambler, /BM

n test-first development, developers formulate and implement a de-
tailed design iteratively, one test at a time.!? Test-driven development
(also called test-driven design) combines TFD with refactoring,’
wherein developers make small changes (refactorings) to improve

code design without changing the code’s semantics. When developers decide

to use TDD to implement a new feature, they must first ask whether the cur-

rent design is the easiest possible design to enable the feature’s addition. If

so, they implement the feature via TFD. If not,
they first refactor the code, then use TFD. In
the behavior-driven development* approach to
TDD, the naming conventions and terminology
make the developer’s primary goal explicit: to
specify, rather than validate, the system.
Test-driven database design applies TDD to
database development. In TDDD, developers
implement critical behaviors (including business
rules about data invariants, such as “The only
valid colors are red, blue, and purple”) and
business functionality within relational data-
bases. There’s nothing special about relational
databases—we specify database behaviors via
database tests in the same way we implement
application-code behaviors via developer tests.
TDDD is not a stand-alone activity. It’s best
viewed as simply the database aspects of TDD.
That is, you should develop your database
schema in lock-step with your application code’

because sometimes you’ll write a developer test
that specifies application code behavior, while
other times it will specify database behavior.
TDDD is important for several reasons.
First, all of application TDD’s benefits apply to
TDDD: you can take small, safe steps; refactor-
ing lets you maintain high-quality design
throughout the life cycle; regression testing lets
you detect defects earlier in the life cycle; and,
because TDDD gives you an executable system
specification, you’re motivated to keep it up-to-
date (unlike with traditional design documenta-
tion). Morcover, with TDD, your database de-
velopment efforts effectively dovetail into your
overall application development efforts. The IT
community has long suffered because of the
cultural mismatch between application devel-
opers and data professionals.’ This mismatch
results largely from differing philosophies and
ways of working. Modern methodologies, in-

May/June 2007 1EEE SOFTWARE 37

Data extr \
Black-hox testing /
* Data values being persisted
e Data values being retrieved
e Stored procedures/functions

acts / e

A
lOnline transaction-processing access

Test data

" Clear-box testing

o Stored procedures/functions
* Triggers

o Views

e Constraints

» Existing data quality

e Referential integrity/data consistency
° -

Figure 1. Testing a
relational database.
Developers must test
the database both
internally and at its
interface—the
equivalent of clear-box
testing and black-box
testing, respectively.

38 IEEE SOFTWARE

cluding Rational Unified Process, Extreme Pro-
gramming, and Dynamic System Development
Method, work in an evolutionary (iterative and
incremental) manner. It therefore behooves us
to find techniques that let data professionals
work in an evolutionary manner with their ap-
plication developer counterparts. TDDD is one
such technique.

Extending TDD to database
development

To extend TDD to database development,
we need database equivalents of regression test-
ing, refactoring, and continuous integration.

Database regression testing

In database regression testing,>” you regu-
larly validate the database by running a com-
prehensive test suite—ideally, whenever you
change the database schema itself or access the
database in a new way. As the threat bound-
aries® (dashed lines) in figure 1 show, you must
test both the database interface and the database
itself.

Interface testing. We use database interface tests
to specify how systems will access the database.
From the database’s viewpoint, these are effec-
tively black-box tests. Such a test might specify
a portion of a hard-coded SQL statement that
you might submit to the database. It might also
specify that

B an SQL statement returns an expected result,
B a view produces an expected result,

www.computer.org/software

B SQL statement calculations return the ex-
pected results,

B a particular user ID can’t access specific
information, or

B a particular user ID can access specific in-
formation.

Interface tests are fairly straightforward to
implement because good tools exist for many
platforms, especially the xUnit framework.
Commerecial tools are also viable options. My
advice: use the same tools that you’re using for
application regression testing.

Internal testing. Internal database tests specify
both behaviors that the database implements
and data validity. There’s nothing special
about stored procedure code—if you can write
tests for Java code, surely you can write tests
for procedural language extensions to SQL
(PLSQL) code. According to current rhetoric,
data is a corporate asset—shouldn’t you there-
fore specify what kind of data you intend to
store, along with the data’s invariants? From
the database’s viewpoint, these are effectively
clear-box tests. Such tests might specify

B some of a stored procedure’s behavior,

B a validity check for a parameter being
passed to a stored procedure,

B a validity check for the value that a stored
procedure returns,

B a stored procedure to return an expected
error code,

B a column invariant,

B a referential integrity rule, and

B a column default.

Tools for internal database testing are a bit
harder to come by, but that’s changing. For ex-
ample, tools such as Quest’s Qute validate Or-
acle PLSQL code and Microsoft’s Visual Stu-
dio Team System for Database Professionals
includes testing tools for SQL Server.

Testing example. The following example illus-
trates regression testing. Assume that we’re
building a banking system and have two fea-
tures to implement: Retrieve Account from
Database and Save Account to Database. Let’s
also assume that this is the first time we’ve run
into the Account concept and that we’re im-
plementing these two features. For account re-
trieval, we’'d run several database tests (one at a

time), including shouldExistOneOrMoreAccounts-
ForCustomer, shouldExistOneOrMoreCustomers-
ForAccount, shouldHaveUniqueAccountID, and
shouldHavePositiveAccountBalance. For saving an
account into the database, we’d add two new
tests: shouldBeAssignedUniqueAccountIDOn-
Creation and shouldBeAssignedZeroBalanceOn-
Creation. I'm using the BBD “should” naming
conventions* here, but the “traditional” TDD
naming convention (starting tests with “test”)
would also work fine.

With a TDDD approach, we’d write each of
these tests one at a time, then evolve the data-
base schema to fulfill the test-specified function-
ality. Consider the test shouldHavePositiveAc-
countBalance. If this is the first time we’ve
considered the account-balance concept, we’d
add the Account.Balance column. Depending on
our database design standards, implementing
such a data-oriented business rule could moti-
vate us to also add a column constraint or an
update trigger that checks the value of Ac-
count.Balance. Regardless of the implementa-
tion strategy, it’s critical to validate that your
database properly supports the business rule.

There’s no magic to identifying a database
test—the advice presented in this special is-
sue’s other articles, as well as in TDD books,
is pertinent to TDDD."? The primary differ-
ence in TDDD is that we must recognize how
important it is to validate both the functional-
ity implemented by, and the data contained
within, the database. A database is nothing
special—like any other system component, it
must be validated.

Database refactoring

Refactoring is a disciplined approach to re-
structuring code: you make small changes to
improve the code’s design, without changing its
behavioral semantics—that is, you neither re-
move nor add behavior.? Refactoring lets you
improve your code over time in a safe, evolu-
tionary manner. Similarly, in database refactor-
ing, you make a simple change to a database
that improves its design, while retaining both
its behavioral and informational semantics.
Databases include structural aspects (such as
table and view definitions), functional aspects
(such as stored procedures and triggers), and in-
formational aspects (the database data). There
are many examples of database refactoring, in-
cluding dropping a view that’s no longer used,
moving a column to a more appropriate table,

; enfythala % S
re. reiacinﬂng 5 1 ~ right
. : refactormg;

e

[Not needed]

‘ [Pass]

‘Rtm the tests

T TIFail]

b § u

Y

v v
Change ynur %
' schema

«Mlgrate dala
: (nplmnal)

— [Work continues]

‘[Finished]

Version-control your work |

i

— Anmmnce the refactormg i

Wmﬂmﬁi’"

2

renaming a column, splitting a multiple-use col-
umn, and parameterizing a database method to
consolidate several similar ones.

Conceptually, a database refactoring is more
difficult than a code refactoring because you
must preserve informational semantics along
with behavioral semantics. Preserving informa-
tional semantics implies that if you change the
values of a column’s data, the change shouldn’t
materially affect that information’s clients. For
example, assume that a phone number is stored
in character-based format. If you change the
value from “(416) 555-1212” to “4165551212,”
you haven’t materially changed the informa-
tion’s semantics, as long as all that column’s
clients can still work with the new format. In
contrast, changing the value to “(416) 555-
5555” clearly changes the informational se-
mantics. Similarly, to preserve behavioral se-
mantics, you must keep the same black-box
functionality. The implication? You must re-
work any source code that works with changed
aspects of your database schema to maintain
the existing functionality.

Process overview. Figure 2 offers an overview
of the database refactoring process using a
UML activity diagram. The recommended ap-

May/June 2007

Figure 2. Database

refactoring. Developers

evolve the database
schema in their own
sandboxes before
sharing the change

with their teammates.

IEEE SOFTWARE

39

— proach is to first implement the database

Organizations

communicating

st promote
an efiective
means of

database
changes

among teams.

40

refactoring in a separate developer’s “sand-
box” where you can perform the work in iso-
lation before promoting it to shared environ-
ments, such as your team integration sandbox.
Better yet: do this early work in pairs, where
at least one person has agile database develop-
ment skills and—more importantly—knowl-
edge of the target database.’

The first step in refactoring is to verify that
you need to refactor the schema and then, if
so, to choose the right refactoring. For exam-
ple, sometimes people suggest renaming a col-
umn, but don’t realize that the existing name
conforms to corporate naming conventions.
Or, perhaps the real problem isn’t the col-
umn’s name, but rather that it’s in the wrong
table and therefore appears poorly named in
that table’s context. In other cases, refactoring
is simply not cost effective.

A possible second step here is to deprecate
the target schema’s existing portion. This is an
optional step; some production databases are
accessed by dozens, if not hundreds, of sys-
tems running on different platforms, written
in different languages, and released into pro-
duction on different schedules. In this situa-
tion, you must support a transition window—
which might last several years in some
organizations—where the schema’s existing

‘and refactored versions run in parallel. In sim-

pler situations, you can update and release
both the database schema and accessing sys-
tems in parallel, so you don’t need to support
a transition window. The point is, you can do
database refactoring in many situations, from
small systems to highly complex ones.

In the next step, you write the code (or gen-
erate it using a database refactoring tool) to
make the change to the database. For database
refactorings that change the table structure,
you’d create Data Definition Language (DDL)
code to add the new schema and Data Manipu-
lation Language (DML) code to manipulate the
data. To keep the data synchronized, you need
to add scaffolding code—typically a trigger, al-
though in some instances an updatable view can
work, too. If you’re doing data-quality refactor-
ing, you might only need to write DML code to
address the quality issue. Similarly, if you’re do-
ing database-method refactorings, you might
only have to rework stored procedure code. In
parallel with this, you must test your work, tak-
ing a test-first approach to design and running

IEEE SOFTWARE www.computer.org/software

your regression test suite whenever you inte-
grate your system (more on these topics later).
As you find bugs, you’ll need to fix them, iter-
ating back and forth between testing and cod-
ing as required.

Once you’ve completed the refactoring,
you should put your work under configura-
tion management (CM) control and announce
the refactoring both to your team and the or-
ganization as a whole. Because databases are
shared resources, database refactoring is often
a challenge to organizations in that they must
promote an effective means of communicating
database changes among teams.

Structural refactoring example. To show how re-
factoring works, we’ll work through a simple
structural refactoring, moving a column from
one table to another. Let’s say our example envi-
ronment has more than 100 systems accessing a
mission-critical database that we can’t afford to
break. Figure 3a shows a portion of a bank data-
base’s original schema. The Customer table has a
Balance column that belongs in the Account
table. As a result of this design flaw, the company
has been coding workarounds for years, making
it difficult to support the business.

Figure 3b shows the transitional database
schema, which we need because the situation is
somewhat complex. We've selected a two-year
transition window to ensure that the various de-
velopment teams can refactor and test their code
to work with the new schema. As the transitional
image shows, we’ve added the new schema (the
Account.Balance column) as well as scaffolding
code—the SynchronizeCustomerBalance and
SynchronizeAccountBalance triggers—to keep
the two columns synchronized. We must assume
that at any point during the transition, each of
the systems accessing this database will access
one but not the other column. In other words,
the database must be responsible for keeping it-
self consistent.

As figure 3b shows, we’ve marked the scaf-
folding code and original schema (Cus-
tomer.Balance) with their intended drop date.
We’re basically following the same strategy
that Sun Microsystems uses to evolve the Java
Development Kit (JDK)—add the new func-
tionality and deprecate the old functionality to
indicate that people should no longer use it.
The difference here is that our drop date tells
people how long they have to refactor their
code. Naturally, we’re not going to automati-

:
-1 accesses 1..*

é
1

§1 accesses 1.

(c)

g accesses 1..*

cally drop the old schema and scaffolding
code on that date; we’ll ensure that developers
have successfully updated and deployed the
accessing applications first. Figure 3¢ shows
the resulting database schema when the
process is complete.

Gontinuous database integration

In continuous database integration, design
team members regularly integrate changes to
their own database instances, including struc-
tural, functional, and informational changes, as
well as those related to automated system build
and regression testing.!? Ideally, they’d do this at
least daily. In any case, whenever someone sub-
mits a database change, everyone else working
with that database should download the change
from the CM system and apply it to their data-
base instance as soon as possible. Better yet, such
changes should be automated—in the same way
tools such as Build Forge or CruiseControl auto-
matically download application code changes
and rebuild your system on your machine.

There are several best practices for contin-
uous database integration:

1. Automate the build. Your database build
process should detect whether it needs to
apply any changes to the schema, then ap-
ply those changes and run the test suite. The
database build process is part of your over-
all system build process. Currently, database
build tools are a relatively new concept, but
open source developers are working on Ac-
tiveRecordMigration in Ruby on Rails and

dbdeploy.

2. Put everything under version control. Data

models, data scripts, test data, and similar
artifacts are all important work products,
and you should manage them appropri-
ately. My philosophy is simple: if it’s worth
creating, it’s worth putting under version
control.

3. Give developers their own database copies.

Developers should first work on application
code and database schema changes in their
own sandboxes.!! Once they’ve fully tested
changes and deemed them safe, they should
apply the changes to the project integration
environment. This reduces the chance that
individual developers will break the build,

Figure 3. A simple
structural refactoring.
(a) The original
database schema’s
Balance column is

in the wrong table.

(b) During the
transition period, the
database must support
both the original and
new schema versions.
(c) Once developers
successfully update and
deploy the systems that
accessed the original
column, we remove

the original schema and
transition scaffolding.

May/June 2007 |EEE SOFTWARE 41

professiona

42

Developers

ago, yet

years

It Pemains
a relatively
new concept

for data

IEEE SOFTWARE

I

S

because they first do their work within their
own independent environments.

4. Automate database creation. There are sev-
eral reasons to create a database copy. You
might need to rebuild it from scratch for
comprehensive testing, new people might
join your team and require proper environ-
ment setup, or you might need to install the
database on a workstation to demo the Sys-
tem for someone. Creating a new database
instance is something that you’re likely to
do often, so you should strive to automate
the task. Similarly, you should be able to
drop the database easily.

5. Refactor each database individually. Indi-
vidual refactoring lets you apply schema
changes one at a time, which in turn lets
you start from any database schema ver-
sion and evolve it forward to any other.

6. Adopt a consistent identification strategy.
Common identification strategies include us-
ing an incremental integer number (1,2, 3, 4,
..+), a date/time stamp, or a release number
(v2.3.1.5). All three strategies are fine, but I
prefer the integer strategy because it’s simple.
It’s important that you be able to apply data-
base changes in the proper order, particularly
if you want to automate database creation
and schema update.

7. Bundle database changes when needed. To
implement a single feature, a developer
might need to make several database sche-
ma changes. When deploying your system
from your project integration environment
to your preproduction testing environment,
yow’ll likely need to bundle up several sche-
ma changes. For example, assume that the
current database schema version is 1701,
and you need to apply three new database
refactorings (1702, 1703, and 1704). Once
you’ve applied all three, in order, the data-
base schema’s new version would be 1704.

8. Ensure that the database knows its version
number. Your database update scripts
should help developers easily determine the
current database version. For example, you
should have an UpdateSchema script that
takes as a parameter a database version—
such as 1704 or 2007-06-14-23:45:00—and
automatically runs the right change scripts to
update to that version from the current one.

Continuous system integration includes the
system’s automated build and regression test-

www.computer.org/software

ing, and continuous database integration is
one part of that overall effort. In other words,
it isn’t enough to just integrate your applica-
tion code; you also need to integrate your
database code.

Adopting TDDD

TDDD is an integrated part of the overall de-
velopment process, not a standalone activity that
data professionals perform in parallel with ap-
plication TDD. Although from a technical view-
point, TDDD is relatively straightforward, we
must overcome several challenges to its whole-
sale adoption throughout the IT community.

Cultural divisions

The cultural divisions between the develop-
ment and data communities are the most signifi-
cant barrier to adoption.’ The development com-
munity is clearly moving toward evolutionary
development, while the data community seems
firmly rooted in serial development. Developers
embraced TDD years ago, yet it remains a rela-
tively new concept for data professionals. A no-
table exception here is in the data warehousing/
business intelligence community, where thought
leaders promote evolutionary work processes (al-
though practitioners, to their peril, often fail to
heed this good advice). Unfortunately, this same
community seems to believe that, because they
work in an evolutionary manner, they don’t need
to test.® We saw this same attitude within the ob-
ject development community in the early 1990s.

A dearth of tools

As I touched on earlier, our second challenge
is the lack of tooling. We’re starting to see inter-
esting tools for database refactoring, testing, and
continuous integration emerge in the market-
place. Because databases are shared resources,
we also need tools that let us communicate
schema changes among all interested teams.

We also need improvements to database
modeling tools—we should, for example, be
able to indicate a deprecated database ele-
ment’s drop date (as in figure 3b). Good data-
base modeling tools should add value to de-
sign visualization. Better yet, we might one
day see modeling tools that can define data-
base tests. Finally, we need to rework data-
bases themselves. For example, shouldn’t the
database throw a warning whenever someone
accesses a deprecated database element, just as
Sun’s JDK does with deprecated Java code?

Lack of familiarity

In my experience, agile software developers
seem to take to the TDDD idea rather quickly.
Presumably, this is because they’ve already
adopted TDD, so extending it to include data-
base development makes sense to them. Tradi-
tional developers—and traditional data pro-
fessionals, in particular—are often intrigued
by the TDDD idea, but they struggle because
it’s so different from what they’re used to. My
hope is that we can overcome this challenge
through training, education, mentoring, and a
bit of patience.

learly, we can extend TDD into the
database development realm, where
implementing a more evolutionary
methodology would better align the field with
other modern methods and applications. All
of the techniques required for TDDD adop-
tion already exist and—more importantly—
we’re seeing nascent tool support for them. I
expect that within the next two to three years,
we’ll see a surge in database development
tools to support evolutionary, if not agile, da-
tabase development techniques. @

References
1. D. Astels, Test Driven Development: A Practical Guide,
Prentice Hall, 2003.
2. K. Beck, Test Driven Development: By Example, Addi-
son-Wesley, 2003.
3. M. Fowler, Refactoring: Improving the Design of Exist-
ing Code, Addison-Wesley Longman, 1999.

About the Author

Scott W. Ambler is the practice leader for agile development with [BM Rational and a
senior contributing editor with Dr. Dobb’s Journal. His research interests include evolutionary
database development and effective data management practices. He originated the Agile Mod-
eling Method, the Agile Data Method, and the Enterprise Unified Process and is an active con-
tributor to the Open Unified Process. He received his MIS in computer-supported cooperative
work from the University of Toronto. He is coauthor of several hooks, including Refactoring
Databases (Addison-Wesley, 2006). Contact him at scott_ambler@ca.ibm.com; www-306.
ibm.com/software/rational /bios/ambler. himl.

4. Behavior Driven Development, Mar. 2007; www.
behaviour-driven.org.

S.W. Ambler, Agile Database Techniques: Effective
Strategies for the Agile Software Developer, John Wiley
& Sons, 2003.

6. S.W. Ambler, Database Regression Testing, 2006; www.
agiledata.org/essays/databaseTesting.html.

7. S.A. Becker and A. Berkemeyer, “The Application of a
Software Testing Technique to Uncover Errors in Data-
base Systems,” Proc. 20th Pacific Northwest Software
Quality Conf., PNSQC/Pacific Agenda, 1999, pp. 173-
183.

8. FE Swiderski and W. Snyder, Threat Modeling, Microsoft
Press, 2004.

9. S.W. Ambler and P. Sadalage, Refactoring Databases:
Evolutionary Database Design, Addison-Wesley, 2006.

10. M. Fowler and P. Sadalage, “Evolutionary Database
Design,” 2003; www.martinfowler.com/articles/
evodb.html.

11. S.W. Ambler, “Development Sandboxes: An Agile Best
Practice,” 2002-2006; www.agiledata.org/essays/
sandboxes.html.

w

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

in IEEE Intelligent Systems

research as it happens in IEEE Intelligent Systems.

See the Future of
Computing Now

Tomorrow's PCs, handhelds, and Internet will use technology
that exploits current research in artificial intelligence.
Breakthroughs in areas such as intelligent agents, the Semantic
Web, data mining, and natural language processing will

revolutionize your work and leisure activities. Read about this

SUBSCRIBE NOW! www.computer.org/intelligent

May/June 2007 |EEE SOFTWARE 43

