
ll 0 ll s I ll I lll 0 ll I o .I0$l-[[ill0[

Test-l[iuen lleuelopment
ol Belational llatabases

Scott W. Ambler, rrM

lmplemenling

lesl-driven

dolshuse design

involves dolobose

refocloring,

regression lesling,

ond conlinuous

inlegrolion.

Although technicolly

slroightforword,

TDDD involves

culturol chollenges

lhot slow ils

odoplion.

n test-first development, developers formulate and implement a de-

tailed design iteratively one test at a time.1,2 Test-driven development

(also called test-driven design) combines TFD with refactoring,3

wherein developers make small changes (refactorings) to improve

code design without changing the code's semantics.'Sfhen developers decide

to use TDD to implement a new feature, they must first ask whether the cur-

rent design is the easiest possible design to enable the feature's addition. If
so, they implement the feature via TFD. If not, because sometimes you'll write a developer test

they first refactor the code, then use TFD. In that specifies application code behavior, while

the behavior-driven deveiopment4 approach to other times it will specify database behavior.

TDD, the naming conventions and terminology TDDD is important for several reasons.

make the developer's primary goal explicit: to First, a1l of application TDD's benefits apply to

specify, rather than validate, the system. TDDD: you can take small, safe steps; refactor-

Test-driven database design applies TDD to ing lets you maintain high-quality design

database development. In TDDD, developers throughout the life cycle; regression testing lets

implement critical behaviors (including business you detect defects earlier in the li{e cycle; and,

rules about data invariants, such as "The only because TDDD gives you an executable system

valid colors are red, blue, and purple") and specification,you'remotivatedtokeepitup-to-
business functionality within relational data- date (unlike with traditional design documenta-

bases. Theret nothing special about relational tion). Moreover, with TDD, your database de-

databases-we specify database behaviors via velopment efforts effectively dovetail into your

database tests in the same way we implement overali application development efforts. The IT
application-code behaviors via developer tests. community has long suffered because of the

TDDD is not a stand-alone activity. Itt best cultural mismatch between application devel-

viewed as simply the database aspects of TDD. opers and data professionals.5 This mismatch

That is, you should develop your database results largely from differing philosophies and

schema in lock-step with your application codes ways of working. Modern methodologies, in-

0740-74591071$25.00 @ 2007 rEEE May/June 2007 IEEE s0FTWABE 37

Figure l. Testing a
relational database.
llevelopers must test
the database both
internally and at its
interface-the
equivalent oI clear-box
testing and black-box
testing, respectively.

cluding Rational Unified Process, Extreme Pro-
gramming, and Dynamic System Development
Method, work in an evolutionary (iterative and
incremental) manner. It therefore behooves us
to find techniques that let data professionals
work in an evolutionary manner with their ap-
plication developer counterparts. TDDD is one
such technique.

Extending Tllll to database
development

To extend TDD to database development,
we need database equivalents of regression test-
ing, refactoring, and continuous integration.

Ilatabase legression testing
In database regression testing,6,7 you regu-

larly validate the database by running a com-
prehensive test suite-ideally whenever you
change the database schema itself or access the
database in a new way. As the threat bound-
ariess (dashed lines) in figure 1 show, you must
test both the database interface and the database
itself.

hfurtace testing. 'We use database interface tests
to specify how systems will access the database.
From the database's viewpoint, these are effec-
tively black-box tests. Such a test might specify
a portion of a hard-coded SQL statemenr that
you might submit to the database. It might also
specify that

r an SQL statement returns an expected result,
r a view produces an expected result,

r SQL statement calculations return the ex-
pected results,
a particular user ID can't access specific
information, or
a particular user ID can access specific in-
formation.

Interface tests are fairly straightforward to
implement because good tools exist for many
platforms, especially the xUnit framework.
Commercial tools are also viable options. My
advice: use the same tools that you're using for
a pplication regression resring.

lnternal testing. Internai database tests specify
both behaviors that the database implements
and data validity. There's nothing special
about stored procedure code-if you can write
tests for Java code, surely you can write tests
for procedural language extensions to SQL
(PLSQL) code. According to current rhetoric,
data is a corporate asset-shouldn't you there-
fore specify what kind of data you intend to
store, along with the data's invariants? From
the database's viewpoint, these are effectively
clear-box tests. Such tests might specify

r some of a stored procedure's behavior,
r a validity check for a paramerer being

passed to a stored procedure,
r a validity check for the value that a stored

procedure returns,
I a stored procedure to return an expected

error code,
I a column invariant,
I a referentiai integrity rule, and
I a column default.

Tools for internal database testing are a bit
harder to come by, but that's changing. For ex-
ample, tools such as Quest's Qute validate Or-
acle PLSQL code and Microsoft's Visual Stu-
dio Team System for Database Professionals
includes testing tools for SQL Server.

Testing example. The following example illus-
trates regression testing. Assume that we're
building a banking system and have two fea-
tures to implement: Retrieve Account from
Database and Save Account to Database. Let's
also assume that this is the first time we've run
into the Account concept and that we're im-
plementing these two features. For account re-
trieval, we'd run several database tests (one at a

I

Black-box teslingl
. Data values being persisted
o Dala values being relrieued
. Stored procedures/functions
4...

- Clear-box testing
o Stored procedures/funGlions
. Triggers
o Views
. Constrainls
. Existing data quality
. Relerential inte0rityidata consistency
4...

3 8 tEEE s0FTWARE www.computer.org/software

time), including shouldExistOneOrMoreAccounts-
ForCustomer, shouldExistOneorMorecustomers-
ForAccount, shouldHaveUniqueAccountlD, and

shouldHavePositiveAccountBalance. For saving an

account into the database, we'd add tlvo new

tests: shouldBeAssignedUniqueAccountlDOn-
Creation and shouldBeAssignedZeroBalanceOn-
Creation. I'm using the BBD "should" naming
conventions4 here, but the "traditional" TDD
naming convention (stating tests with "test")
would also work fine.

With a TDDD approach, we'd write each of
these tests one at a time, then evolve the data-
base schema to fulfill the test-specified function-
ality. Consider the test shouldHavePositiveAc-
countBalance. If this is the first time we've
considered the account-balance concept, we'd
add the Account.Balance column. Depending on
our database design standards, implementing
such a data-oriented business rule could moti-
vate us to also add a column constraint or an

update trigger that checks the value of Ac-
count.Balance. Regardless of the implementa-
tion strategy, it's critical to validate that your
database properly supports the business ruie.

There's no magic to identifying a database
test-the advice presented in this special is-

sue's other articles, as well as in TDD books,
is pertinent to TDDD.1,2 The primary differ-
ence in TDDD is that we must recognize how
important it is to validate both the functional-
ity implemented by, and the data contained
within, the database. A database is nothing
special-like any other system component. it
must be validated.

Ilatabase rcIactoring
Refactoring is a disciplined approach to re-

structuring code: you make small changes to
improve the code's design, without changing its
behavioral semantics-that is, you neither re-
move nor add behavior.3,e Refactoring lets you
improve your code over time in a safe, evolu-
tionary manner. Similarly in database refactor-
ing, you make a simple change to a database

that improves its design, while retaining both
its behavioral and informational semantics.

Databases include structural aspects (such as

table and view definitions), functional aspects
(such as stored procedures and triggers), and in-
formational aspects (the database data). There

are many examples of database refactoring, in-
cluding dropping a view that's no longer used,

moving a column to a more appropriate table,

renaming a column, splitting a multiple-use col-

umn, and parameterizing a database method to
consolidate several similar ones.

Conceptually, a database refactoring is more

difficult than a code refactoring because you

must preserve informational semantics along

with behavioral semantics. Preserving informa-
tional semantics implies that if you change the

values of a column's data, the change shouldn't
materially affect that information's clients. For

example, assume that a phone number is stored

in character-based format. If you change the

value from "(416) 555-1212" to "416555121.2,"

you haven't materially changed the informa-
tion's semantics, as long as all that column's

clients can still work with the new format. In

contrast, changing the value to "(416) 555-

5555" clearly changes the informational se-

mantics. Similarly, to preserve behavioral se-

mantics, you must keep the same black-box
functionality. The implication? You must re-

work any source code that works with changed

aspects of your database schema to maintain
the existing functionality.

Process overview. Figure 2 offers an overview
of the database refactoring process using a

UML activity diagram. The recommended ap-

Figure 2.Ilatabase
relactoring. Ileuelopers
euolue the database
sehema in their own
sandboxes belore
sharing the change
with their teammates.

May/June 2007 IEEE S0FTWABE 39

&rsaxsExmEiesEs

sffiffis8 $rers?*88
#$B egr*sEts#

rBBe&r:& *g
*ss*EE!ffiffix*e€8ffiff

ff*ae&es&
sIlesEs*$

e5E?*!ffi$ E*&5s?S"

proach is to first implement the database
refactoring in a separate developer's "sand-
box" where you can perform the work in iso-
iation before promoting it to shared environ-
ments, such as your team integration sandbox.
Better yet: do this early work.in pairs, where
at least one person has agile database deveiop-
ment skills and-more importantly-knowl-
edge of the target database.s

The first step in refactoring is to verify that
you need to refactor the schema and then, if
so, to choose the right refactoring. For exam-
p[e. sometimes people suggest renaming a col-
umn, but don't realize that the existing name
conforms to corporate naming conventions.
Or, perhaps the real problem isn't the col-
umn's name, but rather that it's in the wrong
table and therefore appears poorly named in
that table's context. In other cases, refactoring
is simply nor cost effective.

A possible second step here is to deprecate
the target schema's existing portion. This is an
optional step; some production databases are
accessed by dozens, if not hundreds, of sys-
tems running on different platforms, written
in different languages, and released into pro-
duction on different schedules. In this situa-
tion, you must support a transition window-
which might last several years in some
organizations-where the schema's existing
and refactored versions run in parallel. In sim-
pler situations, you can update and release
both the database schema and accessing sys-
tems in parallel, so you don't need to support
a transition window. The point is, you can do
database refactoring in many situations, from
small systems to highly complex ones.

In the next srep, you write the code (or gen-
erate it using a database refactoring tool) to
make the change to the database. For database
refactorings that change the table structure,
you'd create Data Definition Language (DDL)
code to add the new schema and Data Manipu-
lation Language (DML) code ro manipulate the
data. To keep the data synchronized, you need
to add scaffolding code-typically a trigger, al-
though in some instances an updatable view can
work, too. If you're doing data-quality refactor-
ing, you might only need to write DML code to
address the quality issue. Similarly, if you're do-
ing database-method refactorings, you might
oniy have to rework stored procedure code. In
parallel with this, you must test your work, tak-
ing a test-first approach to design and running

your regression test suite whenever you inte-
grate your system (more on these topics later).
As you find bugs, you'll need to fix them, iter-
ating back and forth between testing and cod-
ing as required.

Once you've completed the refactoring,
you should put your work under configura-
tion management (CM) control and announce
the refactoring both to your team and the or-
ganization as a whole. Because databases are
shared resources, database refactoring is often
a challenge to organizations in that they must
promote an effective means of communicating
database changes among teams.

Stractural refactoring example. To show how re-
factoring works, we'll work through a simple
structural refactoring, moving a column from
one table to another. Let's say our example envi-
ronment has more than 100 systems accessing a
mission-critical database that we can't afford to
break. Figure 3a shows a portion of a bank data-
base's original schema. The Customer table has a

Balance column that belongs in the Account
table. As a result of this design flaw, the company
has been coding workarounds for years, making
it difficult to support the business.

Figure 3b shows the transitional database
schema, which we need because the situation is

somewhat complex. \7e've selected a two-year
transition window to ensure that the various de-

velopment teams can refactor and test their code
to work with the new schema. As the transitional
image shows, we've added the new schema (the
Account.Balance column) as well as scaffolding
code-the SynchronizeCustomerBalance and
SynchronizeAccountBalance triggers-to keep
the rwo columns synchronized.'We must assume

that at any point during the transition, each of
the systems accessing this database will access

one but not the other column. In other words,
the database must be responsible for keeping it-
self consistent.

As figure 3b shows, we've marked the scaf-
folding code and original schema (Cus-
tomer.Balance) with their intended drop date..We're

basically following the same strategy
that Sun Microsystems uses to evolve the Java
Development Kit (JDK)-add the new func-
tionality and deprecate the old functionality to
indicate that people should no longer use it.
The difference here is that our drop date tells
people how long they have to refactor their
code. Naturally, we're not going to automati-

4 0 IEEE S0FTWABE www.c0mputer.org/s0ftware

AcnoInt, I

FirslName: ' ''
Customerlo <<Pl6>
Balaric8. .. r '

CheckNoAscountsr :,: $

levent,=belore deletel, i*.***.*
(a)

'. .i . ,. ..,,.,,:.Guslomglr'r,.

AccounllD <<PK>> i

,9ltL1ryql9i:l[*;.-,*;.-,"-J
Checkcusl0meiExislsi: : : r l

{event:-' tqforc updale I beloie insett}:.}

1 accesses

1 accesses 1 ..

,1,.*9,*,m,s*s!
SynchronizeAGcountBalance

{€ient'= on usdatt I on'delete I m inssrt,
drop date = June 14 2llll9l

CheckNoAccounls

levent = belore deletel

SynchronizeCustomerBalance

levent = on update I on insett,
drop date = June 14 O09l

CheckCuslomerExists

, {eved
=

telore undalBil..bolorc ins!$

Figure 3. A simple
structural relactoring.
(a) The original
database schema's
Balance column is
in the wrong table.
(b) Iluring the
transition period, the
database must support
both the original and
new sehama uersions.
(c) 0nce developers
successlully update and
deploy the systems that
accessed the original
column, we temoue
the original schema and
transition scallolding.

caily drop the old schema and scaffolding
code on that date; we'll ensure that developers
have successfully updated and deployed the
accessing applications first. Figure 3c shows
the resulting database schema when the
process is complete.

Gontinuous database integration
In continuous database integration, design

team members regularly integrate changes to
their own database instances, including struc-
tural, functional, and informational changes, as

well as those related to automated system build
and regression testing.l0 Ideally, they'd do this at
least dai1y. In any case, whenever someone sub-

mits a database change, everyone else working
with that database should download the change

from the CM system and apply it to their data-
base instance as soon as possible. Better yet, such

changes should be automated-in the same way
tools such as Build Forge or CruiseControl auto-
matically download application code changes

and rebuild your system on your machine.
There are several best practices for contin-

uous database integration:

l. Automate the build. Your database build
process should detect whether it needs to
apply any changes to the schema, then ap-

p1y those changes and run the test suite. The

database build process is part of your over-

all system build process. Currently, database

build tools are a relatively new concept, but
open source developers are working on Ac-

tiveRecordMigration in Ruby on Rails and

dbdeploy.
2. Put euerything under uersion control. Data

models, data scripts, test data, and similar
artifacts are all important work products,
and you should manage them appropri-
ate1y. My philosophy is simple: if it's worth
creating, it's worth putting under version

control.
3. Giue deuelopers their own database copies.

Developers should first work on application
code and database schema changes in their
own sandboxes.ll Once they've fully tested

changes and deemed them safe, they should

apply the changes to the project integration
environment. This reduces the chance that
individual developers will break the build,

May/June 2007 IEEE S0FTWARE 41

ffi*sffiE*s*&-s

*ffiE*re€**
€ffiEx #&ex-s

&s€8, s*E
EE rs$Ele**s
* re3egEe$**s

*sw **ffi**$E
g*r *e€e

because they first do their work within their
own independent environmenrs.

4. Awtomate database creation, There are sev_
eral reasons to create a database copy. you
might need to rebuild it from scratch for
comprehensive testing, new people might
join your team and require proper environ-
ment setup, or you might need to install the
database on a workstation to demo the svs-
tem for someone. Creating a ,rew database
instance is something that you're likely to
do often, so you should strive to automate
the task. SimilarlS you should be able to
drop the database easily.

5. Refactor each database indiuiduallv. Indi-
vidual refactoring iets you apply ..h.-"
changes one at a time, which in turn lets
you start from any database schema ver_
sion and evolve it forward to any other.

6. Adopt a consistent identification strcttegy.
Common identification strategies include us_
ing an incremental integer number (1r2,3,4,
...), a date/time stamp, or a release number
(v2.3.1.5). All three strategies are fine, but I
prefer the integer straregy because it,s simple.
Ir's imporrant rhat you be able ro apply dara_
base changes in the proper order, particuiarly
if you want to automate database creation
and schema update.

7. Bundle database changes wben needed. To
implement a single feature, a developer
might need to make several database sche_
ma changes. 'When

deploying your sysrem
from your project integration environment
to your preproduction testing environment.
you'll likely need to bundle up several sche-
ma changes. For example, assume that the
current database schema version is 1701,,
and you need to apply three new database
refactorings (1702, 1,703, and 1704). Once
you've applied all three, in order, the data_
base schema's new version would be 1704.

8. Ensure that the database knows its uersion
nwmber. Your database update scripts
should help deveiopers easily determine ihe
current database version. For example, you
should have an Updateschema script that
takes as a parameter a database veision-
such as 1704 or 2007-06-14-23:45:00_and
automatically runs the right change scripts to
update to that version from the ..r.r..f orr..

Continuous system integration includes the
system's automated build and regression test_

ing, and continuous database integration is
one parr of that overall effort. In other words,
it isn't enough to just integrate your applica_
tion code; you also need to integrate your
database code.

fidopting TIlllD
TDDD is an integrated part of the overall de-

velopment process, not a standalone activity that
data professionals perform in parallei with ap-
plication TDD. Although from a technical view_
point, TDDD is relatively straightforward, we
must overcome several challenges to its whole-
saie adoption throughout the IT community.

Cultural divisions

The cultural divisions berween the develop_
menr and data communiries are rhe mosr signifi_
cant barrier to adoption.5 The development com_
munity is clearly moving toward evolutionary
development, while the data communiry seems
firmly rooted in serial development. Developers
embraced TDD years ago, yet it remains a rela-
tively new concept for data professionals. A no-
table exception here is in the data warehousing/
business intelligence communiry where thought
leaders promote evolutionary *ork p.ocesses (rl-
though practitioners, to their peril, often fail to
heed this good advice). Unfortunately, this same
community seems to believe that, because they
work in an evolutionary manner, they don,t need
to tesr.6 We saw this same attitude within the ob-
ject developmenr community in the early 1990s.

A dearth of tools
As I touched on earlier, our second challenge

is the lack of tooling. We're starting to see inter-
esting tools for database refactoring, testing, and
continuous integration emerge in the market-
place. Because databases are shared resources,
we also need tools that let us communicate
schema changes among all interested teams.

We also need improvements to database
modeling tools-we should, for example, be
able to indicate a deprecated database ele-
ment's drop date (as in figure 3b). Good data_
base modeling tools should add value to de-
sign visualization. Better yet, we might one
day see modeling tools that can define data-
base tests. FinallS we need to rework data-
bases themselves. For example, shouldn,t the
database throw a warning whenever someone
accesses a deprecated database element, just as
Sun's JDK does with deprecated Java code?

*tr*x*s$E&**is.

42 IEEES0FIWARE www.conputer.org/sLftware

Lack of familiarity
In my experience, agile software developers

seem to take to the TDDD idea rather quickly.
PresumablS this is because they've already
adopted TDD, so extending it to include data-
base development makes sense to them. Tradi-
tional developers-and traditional data pro-
fessionals, in particular-are often intrigued
by the TDDD idea, but they struggle because
it's so different from what they're used to. My
hope is that we can overcome this challenge
through training, education, mentoring, and a
bit of patience.

learly, we can extend TDD into the
database development realm, where
implementing a more evolutionary

methodoiogy would better align the field with
other modern methods and applications. A11

of the techniques required for TDDD adop-
tion already exist and-more importantly-
we're seeing nascent tool support for them. I
expect that within the next two to three years,
we'll see a surge in database development
tools to support evolutionary, if not agile, da-
tabase development techniques. @

Relerences
1. D. Astels, Test Driuen Deuelopffient: A Practical Guide,

Prentice Hall, 2003.

2. K. Beck, Test Driuen Deuelopment: By Example, Addi-
son-Wesle,v, 2003.

3. M. Fowler, Refactoring: lmprouing the Design of Exist-
ing Code, Addison-Wesley Longman, 1999.

Scott W. Ambler is the prorlke leoder {or ogile development with IBM Rolionol ond o

senior ronlribufing editor with Dr. Dohh's lournol. His reseor(h interesls indude evolulionory

dolobose development ond effedive dolo monogemenl proclkes. He originoled fie Agile Mod-

eling Method, fie Agile Doto Method, ond the Enterprise Unified Prores ond is on otlive ron-

tributor to the 0pen Unified Prores. He rereived his MIS in compuler-supporled cooperolive

work from the Universily ofloronlo. He is cooulhor of severol books, induding rleforlonng

Dotoboses (Addison-Wesley, 2006). (onlod him ot sroll_ombler@ro.ibm.com; ww-306.
ibm.romAoftwore/rotion0lAios^mbler.html.

Bebauior Driuen Deuelopment, Mar.2007; ww.
behaviour-driven. org.

S.1W. Ambler, Agile Datdbase Techniques: Effectiue
Strategies for tbe Agile Software Deueloper, lobn Viley
& Sons, 2003.

S.-{/. Ambler, Datdbase Regression Teslrzg, 2006; www
agiledata.org/essays/databaseTesting.html.

7. S.A. Becker and A. Berkemeyer, "The Application of a
Software Testrng Technique to Uncover Errors in Data-
base Systems," Proc. 20th Pacific Northwest Softuare

Quality Conf., PNSQCiPacific Agenda, 1999, pp. 173-
183.

8. F. Swiderski and W. Snyder; Tbreat Modeling, Microsoft
Press, 2004.

9. S.$7. Ambler and P Sadalage, Refactoring Databases:
Eu olutionary D atab dse Deslgn, Addison-Wesley, 2006.

10. M. Fowler and P. Sadalage, "Evolutionary Database
Design, " 2003; wrvw.martinfowler.com./articles/
evodb.html.

11. S.\)(/. Ambler, "Development Sandboxes: An Agile Best

Practice," 2002-2006 ; www.agiledata.org/essays/
sandboxes.html.

For more informolion on lhis or ony other compuling lopk, pleose visil our

Digitol Librory ot ww.computer.org/publicotions/dlib.

See the Future of
Gomputing llow
ln IEEE lntelligent Systens

Tomorrow's PCs, handhelds, and lnternet will use technology

that exploits current research in artificial intelligence.

Breakthroughs in areas such as intelligent agents, the Semantic

Web, data mining, and natural language processing will

revolutionize your work and leisure activities. Read about this

research as it happens in IEEE lntelligent Systems.

May June 2047 IEEE S0FTlillARE 43

