A good developer knows that
there is more to development
than programming.

A great developer knows that
there is more to development
than development.

When you go against a standard,
document it. All standards, except for
this one, can be broken. You must
document why you broke the
standard, the potential implications
of breaking the standard, and any
conditions that may/must occur
before the standard can be applied to
this situation.

JAVA NAMING
CONVENTIONS

Always use (a few exceptions discussed
below) full English descriptors. Use lower
case letters in general, but capitalize the
first letter of class / interface names and
the first letter of any non-initial word

.—I General Concepts

Use terminology applicable to the domain
Use mixed case for readability
Use short forms sparingly and intelligently
Avoid long names (< 15 characters)
Avoid names that are similar or
differ only in case

ltem Example

Naming convention

Full English description of value/object being
passed, possibly prefixing the name with ‘a’ or ‘an.’

Full English description, 1st letter lowercase,
1st letter of any non-initial word in uppercase

Pefixed with ‘is’

Arguments/ customer , account, - or
parameters - aCustomer , anAccount
Fields / properties firstName , lastName ,
warpSpeed
Boolean getter isPersistent() , isString()
member functions , isCharacter()
Classes Customer,

SavingsAccount

Full English description, with the first letters
of all words capitalized

Compilation unit SavingsAccount.java ,

Name of class/interface; if > 1 class in file, prefixed
with ‘.java’ to indicate it's a source code file.

Full English description describing usage; type
of the component concatenated onto the end.

Use the name of the class

Will invoke finalize() member function before
an object is garbage collected

It is generally accepted to use the letter ‘e’
to represent exceptions

Uppercase letters, words separated by under-
scores. Better: final static getter member functions

Prefix the name of the field being accessed
with ‘get’

Full English descr. concept of interface, 1st letters
of words cap'd. Postfix name with ‘able,’ ‘ible,” or ‘er’

Full English description, 1st letter in lower
case but do not hide existing fields/fields

It is generally accepted to use the letters i, j
, or k, or the name ‘counter .’

files Singleton.java
Components/ okButton , customerList ,
widgets fileMenu
Contructors Customer() ,
SavingsAccount()
Destructors finalize()
Exceptions e
Final Static fields MIN_BALANCE ,
/ constants DEFAULT_DATE
Getter member getFirstName() ,
functions getWarpSpeed()
Interfaces Runnable , Prompter,
Singleton
Local variables grandTotal , customer,
newAccount
Loop counters i,j,k,counter
Package ca.uvic.neptune.per-

sistence.mapping

See Classes - Global packages: reverse name
of Internet domain & postfix the package name.

Member Functions openfFile() , addAccount()

Full English description of what it does; starting
with active verb if possible, 1st letter in lower case

Setter member setLastName() ,
functions setWarpSpeed()

Prefix the name of the field being accessed
with ‘set’

O

Rule of thumb: if you’ve never seen the
code before, what documentation would
you need to quickly understand it

Java comment type

JAVA DOCUMENTATION (
CONVENTIONS

JAVA CODING

1 General Concepts

Comments should add to clarity
If it isn’t worth documenting,
it isn’t worth running
No decoration / banner-like comments
Keep comments simple
Write documentation before writing code
Why ~ not What

CONVENTIONS

99.9% of the time it is more important

to program for your fellow
developers than for the machine

Your code must be
understandable to others

Documentation Immediately before declarations /**

of interfaces, classes, member
functions and fields to document
them. These are processed by
javadoc to create external
documentation for a class.

C Style

debugging.

Single line

C-style comments to disable
lines of code that are no longer
applicable, but that you want to
keep just in case ~ or while

Use single line comments
internally within member
functions to document business
logic, code sections and

Customer — A customer is any
person or organization that we
sell services and products to.
gauthor S.W. Ambler

/

/*

Commented out by J.T. Kirk on 1/1/03

replaced by preceding code. Delete

after 2 years if still not applicable
. (the source code)

*/

// Apply a 5% discount to all

// invoices over $1000 as defined by
// the Sarek generosity campaign

// started in Feb 1995

declarations of temporary

variables.

Arguments / parameters

Fields/properties

Classes

Compilation units
Getter member function
Interfaces

Local variables

Member Functions
(Documentation)

Member Functions
(Internal comments)

Package

The type of the parameter
What it should be used for

Any restrictions or preconditions
Examples

Its description

Document all applicable invariants
Examples

Concurrency issues

Visibility decisions

The purpose of the class

Known bugs

The development/maintenance history of the class

Document applicable invariants

The concurrency strategy

Each class/interface defined in the class, incl. a brief description
The file name and/or identifying information

Copyright information

Document why lazy initialization was used, if applicable

The purpose

How it should and shouldn’t be used

Its use/purpose

What and why the member function does what it does

What a member function must be passed as parameters
What a member function returns

Known bugs

Any exceptions that a member function throws

Visibility decisions

How a member function changes the object

Include a history of any code changes

Examples of how to invoke the member function if appropriate
Applicable preconditions and postconditions

Document all concurrency

Control structures

Why, as well as what, the code does

Local variables

Difficult or complex code

The processing order

The rationale for the package

The classes in the package

WHAT to

document

Accessor member functions

Fields

Classes

Local variables

Member functions

This text is a summary of
Scott Ambler's 'Writing
Robust Java Code'

The AmbySoft Inc.
Coding Standards for
Java - v17.01d

This layout by Maike Dulk

Consider using lazy initialization for fields in the database
Use accessors for obtaining and modifying all fields

Use accessors for ‘constants”

For collections, add member functions to insert and
remove items

Whenever possible, make accessors protected, not public

Fields should always be declared private

Do not directly access fields, instead use accessor
member functions

Do not use final static fields (constants), instead use
accessor member functions

Do not hide names

Always initialize static fields

Minimize the public and protected interfaces

Define the public interface for a class before you begin
coding it

Declare the fields and member functions of a class in the
following order:

- constructors

- finalize()

- public member functions

- protected member functions

- private member functions

- private field

Do not hide names

Declare one local variable per line of code
Document local variables with an endline comment
Declare local variables immediately before their use
Use local variables for one thing only

Document your code

Paragraph your code

Use whitespace, one line before control structures and two
before member function

declarations

A member function should be understandable in less than
thirty seconds

Write short, single command lines

Restrict the visibility of a member function as much as
possible

Specify the order of operations

