

The Design of a

Robust Persistence Layer
For Relational Databases

Scott W. Ambler
Senior Consultant, Ambysoft Inc.

www.ambysoft.com/scottAmbler.html

http://www.ambysoft.com/downloads/persistenceLayer.pdf

This Version: June 21, 2005

Copyright 1997-2005 Scott W. Ambler

Copyright 1997-2005 Scott W. Ambler

2

Table Of Contents

1. GOOD THINGS TO KNOW ABOUT THIS PAPER ..1

2. KINDS OF PERSISTENCE LAYERS...1

3. THE CLASS-TYPE ARCHITECTURE..3

4. REQUIREMENTS FOR A PERSISTENCE LAYER ..5

5. THE DESIGN OF A PERSISTENCE LAYER...8
5.1 OVERVIEW OF THE DESIGN ...8

5.1.1 The PersistentObject Class ..9
5.1.2 The PersistentCriteria Class Hierarchy...10
5.1.3 The Cursor Class ...12
5.1.4 The PersistentTransaction Class ...13
5.1.5 The PersistenceBroker Class ...14
5.1.6 The PersistenceMechanism Class Hierarchy...15
5.1.7 The Map Classes..16
5.1.8 The SqlStatement Class Hierarchy ..18

6. IMPLEMENTING THE PERSISTENCE LAYER ..19
6.1 BUY VERSUS BUILD ...19
6.2 CONCURRENCY, OBJECTS, AND ROW LOCKING ..19
6.3 DEVELOPMENT LANGUAGE ISSUES...20
6.4 A DEVELOPMENT SCHEDULE ..21

7. DOING A DATA LOAD ...21
7.1 TRADITIONAL DATA LOADING APPROACHES ..21
7.2 ARCHITECTED DATA LOADING ...22

8. SUPPORTING THE PERSISTENCE LAYER...23

9. SUMMARY..25

10. ABOUT THE AUTHOR ...25

11. REFERENCES AND RECOMMENDED READING ...26

Copyright 1997-2005 Scott W. Ambler

1

In this white paper I present an overview of the design of a robust persistence layer for object-oriented
applications. I have implemented all or portions of this design in several languages, in other words, this
design has been proven in practice.

1. Good Things to Know About This Paper
1. I assume that you have read my white paper entitled Object/Relational Mapping 101 at

www.agiledata.org/essays/mappingObjects.html.
2. Throughout this paper I will use the Unified Modeling Language (UML) version to represent my

models.
3. Accessor methods, also known as getters and setters, are assumed for all attributes.
4. All attributes are private.
5. When I refer to an instance of class X, the implication is that I’m really referring to instances of class X

or any of its subclasses. This concept is called the Liskov Substitution Principle.
6. I do not present code for the persistence layer (and I will not distribute it), nor do I go into language-

specific issues in the design. I will however discuss implementation issues at the end of the paper.

2. Kinds of Persistence Layers
I would like to begin with a discussion of the common approaches to persistence that
are currently in practice today. Figure 1 presents the most common, and least
palatable, approach to persistence in which Structured Query Language (SQL) code
is embedded in the source code of your classes. The advantage of this approach is
that it allows you to write code very quickly and is a viable approach for small
applications and/or prototypes. The disadvantage is that it directly couples your
business classes with the schema of your relational database, implying that a simple
change such as renaming a column or porting to another database results in a rework
of your source code.

Hard-coded SQL
in your business
classes results in
code that is
difficult to
maintain and
extend.

Figure 1. Hard-coding SQL in your domain/business classes.

Figure 2 presents a slightly better approach in which the SQL statements for your business
classes are encapsulated in one or more “data classes.” Once again, this approach is
suitable for prototypes and small systems of less than 40 to 50 business classes but it still
results in a recompilation (of your data classes) when simple changes to the database are
made. Examples of this approach include developing stored procedures in the database to
represent objects (replacing the data classes of Figure 2) and Enterprise JavaBean (EJB)’s
entity bean strategy. The best thing that can be said about this approach is that you have at
least encapsulated the source code that handles the hard-coded interactions in one place,
the data classes.

Hardcoding
SQL in
separate data
classes or
stored
procedures is
only slightly
better.

Copyright 1997-2005 Scott W. Ambler

2

Figure 2. Creating data classes corresponding to domain/business classes.

Figure 3 presents the approach that will be taken in this paper, that of a robust persistence layer that maps
objects to persistence mechanisms (in this case relational databases) in such a manner that simple changes
to the relational schema do not affect your object-oriented code. The advantage of this approach is that
your application programmers do not need to know a thing about the schema of the relational database, in
fact, they don’t even need to know that their objects are being stored in a relational database. This approach
allows your organization to develop large-scale, mission critical applications. The disadvantage is that
there is a performance impact to your applications, a minor one if you build the layer well, but there is still
an impact.

Figure 3. A robust persistence layer.

To understand our approach better, you must first understand the need for layering your application.

Copyright 1997-2005 Scott W. Ambler

3

3. The Class-Type Architecture
Figure 4 shows a class-type architecture (Ambler, 1998a; Ambler, 1998b, Ambler,
2004) that your programmers should follow when coding their applications. The class-
type architecture is based on the Layer pattern (Buschmann, Meunier, Rohnert,
Sommerlad, Stal, 1996), the basic idea that a class within a given layer may interact
with other classes in that layer or with classes in an adjacent layer. By layering your
source code in this manner you make it easier to maintain and to enhance because the
coupling within your application is greatly reduced.

Layering your
application code
dramatically
increases its
robustness.

Figure 4. The class-type architecture.

Figure 4 indicates that users of your application interact directly with the user-interface layer of your
application. The user-interface layer is generally made up of classes that implement screens and reports.
User-interface classes are allowed to send messages to classes within the domain/business layer, the

User Interface Classes

Business/Domain Classes

Persistence Classes

Persistent Store(s)

Controller/
Process Classes

System
Classes

Copyright 1997-2005 Scott W. Ambler

4

controller/process layer, and the system layer. The domain/business layer implements the domain/business
classes of your application, for example the business layer for a telecommunications company would
include classes such as Customer and PhoneCall. The controller/process layer, on the other hand,
implements business logic that involves collaborating with several business/domain classes or even other
controller/process classes such as the calculation of the charge of a phone call (which would interact with
instances of PhoneCall, Customer, and CallingPlan). The system layer implements classes that provide
access to operating system functionality such as printing and electronic mail. Domain/business classes are
allowed to send messages to classes within the system layer and the persistence layer. The persistence layer
encapsulates the behavior needed to store objects in persistence mechanisms such as object databases, files,
and relational databases.

By conforming to this class-type architecture the robustness of your source code increases dramatically due
to reduced coupling within your application. Figure 4 shows that for the user-interface layer to obtain
information it must interact with objects in the domain/business layer, which in turn interact with the
persistence layer to obtain the objects stored in your persistence mechanisms. This is an important feature
of the class-type architecture – by not allowing the user interface of your application to directly access
information stored in your persistence mechanism you effectively de-couple the user interface from the
persistence schema. The implication is that you are now in a position to change the way that objects are
stored, perhaps you want to reorganize the tables of a relational database or port from the persistence
mechanism of one vendor to that of another, without having to rewrite your screens and reports.

Important heuristics:

1. User-interface classes should not directly access your persistence mechanisms. By
encapsulating the business logic of your application in domain/business classes and
controller/process classes, and not in your user interface, you are able to use that business logic in
more than one place. For example, you could develop a screen that displays the total produced by
an instance of the domain/business class Invoice (Ambler, 1998h) as well as a report that does the
same. If the logic for calculating the total changes, perhaps complex discounting logic is added,
then you only need to update the code contained within Invoice and both the screen and report will
display the correct value. Had you implemented totaling logic in the user interface it would have
been in both the screen and the report and you would need to modify the source code in two
places, not just one.

2. Domain/business classes should not directly access your persistence mechanisms. Just like you

do not want to allow user-interface classes to directly access information contained in your
persistence mechanism, neither do you want to allow domain/business classes and
controller/process to do so. We’ll see in the next section that a good persistence layer protects
your application code from persistence mechanism changes. If a database administrator decides to
reorganize the schema of a persistence mechanism it does not make sense that you should have to
rewrite your source code to reflect those changes.

3. The class-type architecture is orthogonal to your hardware/network architecture. An

important thing to understand about the class-type architecture is that it is completely orthogonal to
your hardware/network architecture. Table 1 shows how the various class types would be
implemented on common hardware/network architectures. For example, we see that with the thin-
client approach to client/server computing that user-interface and system classes are implemented
on the client and that domain/business, persistence, and system classes are implemented on the
server. Because system classes wrap access to network communication protocols you are
guaranteed that some system classes will reside on each computer.

Copyright 1997-2005 Scott W. Ambler

5

Class Type

Stand
Alone

Thin-
Client

Fat-Client

n-Tier

Distributed
Objects

User interface Client Client Client Client Client
Controller/process Client Server Client Application

server
Do not care

Domain/business Client Server Client Application
server

Do not care

Persistence Client Server Server Database server Do not care
System Client All machines All machines All machines All machines

Table 1. Deployment strategies for class types for various hardware/network architectures.

4. Requirements For a Persistence Layer
I have always been a firm believer that the first thing you should do when developing software is define the
requirements for it. The requirements presented here (Ambler, 1998d) reflect my experiences over the years
building and using persistence layers. I first started working with the object paradigm in 1991, and since
then I have developed systems in C++, Smalltalk, and Java for the financial, outsourcing, military, and
telecommunications industries. Some of these projects were small, single-person efforts and some involved
several hundred developers. Some were transaction-processing intensive whereas others dealt with very
complex domains. The short story is that these requirements reflect my experiences on a diverse range of
projects.

A persistence layer encapsulates the behavior needed to make objects persistent, in other words to read,
write, and delete objects to/from permanent storage. A robust persistence layer should support:
1. Several types of persistence mechanism. A persistence mechanism is any technology that can be

used to permanently store objects for later update, retrieval, and/or deletion. Possible persistence
mechanisms include flat files, relational databases, object-relational databases, hierarchical databases,
network databases, and objectbases. In this paper I will concentrate on the relational aspects of a
persistence layer.

2. Full encapsulation of the persistence mechanism(s). Ideally you should only have to send the

messages save, delete, and retrieve to an object to save it, delete it, or retrieve it respectively. That’s
it, the persistence layer takes care of the rest. Furthermore, except for well-justified exceptions, you
shouldn’t have to write any special persistence code other than that of the persistence layer itself.

3. Multi-object actions. Because it is common to retrieve several objects at once, perhaps for a report or

as the result of a customized search, a robust persistence layer must be able to support the retrieval of
many objects simultaneously. The same can be said of deleting objects from the persistence
mechanism that meet specific criteria.

4. Transactions. Related to requirement #3 is the support for transactions, a collection of actions on

several objects. A transaction could be made up of any combination of saving, retrieving, and/or
deleting of objects. Transactions may be flat, an “all-or-nothing” approach where all the actions must
either succeed or be rolled back (canceled), or they may be nested, an approach where a transaction is
made up of other transactions which are committed and not rolled back if the large transaction fails.
Transactions may also be short-lived, running in thousandths of a second, or long-lived, taking hours,
days, weeks, or even months to complete.

5. Extensibility. You should be able to add new classes to your object applications and be able to change

persistence mechanisms easily (you can count on at least upgrading your persistence mechanism over

Copyright 1997-2005 Scott W. Ambler

6

time, if not port to one from a different vendor). In other words your persistence layer must be flexible
enough to allow your application programmers and persistence mechanism administrators to each do
what they need to do.

6. Object identifiers. An object identifier (Ambler, 1998c), or OID for short, is an attribute, typically a

number, that uniquely identifies an object. OIDs are the object-oriented equivalent of keys from
relational theory, columns that uniquely identify a row within a table.

7. Cursors. A persistence layer that supports the ability to retrieve many objects with a single command

should also support the ability to retrieve more than just objects. The issue is one of efficiency: Do you
really want to allow users to retrieve every single person object stored in your persistence mechanism,
perhaps millions, all at once? Of course not. An interesting concept from the relational world is that of
a cursor. A cursor is a logical connection to the persistence mechanism from which you can retrieve
objects using a controlled approach, usually several at a time. This is often more efficient than
returning hundreds or even thousands of objects all at once because the user many not need all of the
objects immediately (perhaps they are scrolling through a list).

8. Proxies. A complementary approach to cursors is that of a “proxy.” A proxy is an object that

represents another object but does not incur the same overhead as the object that it represents. A proxy
contains enough information for both the computer and the user to identify it and no more. For
example, a proxy for a person object would contain its OID so that the application can identify it and
the first name, last name, and middle initial so that the user could recognize who the proxy object
represents. Proxies are commonly used when the results of a query are to be displayed in a list, from
which the user will select only one or two. When the user selects the proxy object from the list the real
object is retrieved automatically from the persistence mechanism, an object which is much larger than
the proxy. For example, the full person object may include an address and a picture of the person. By
using proxies you don’t need to bring all of this information across the network for every person in the
list, only the information that the users actually want.

9. Records. The vast majority of reporting tools available in the industry today expect to take collections

of database records as input, not collections of objects. If your organization is using such a tool for
creating reports within an object-oriented application your persistence layer should support the ability
to simply return records as the result of retrieval requests in order to avoid the overhead of converting
the database records to objects and then back to records.

10. Multiple architectures. As organizations move from centralized mainframe architectures to 2-tier

client/server architectures to n-tier architectures to distributed objects your persistence layer should be
able to support these various approaches. The point to be made is that you must assume that at some
point your persistence layer will need to exist in a range of potentially complex environments.

11. Various database versions and/or vendors. Upgrades happen, as do ports to other persistence

mechanisms. A persistence layer should support the ability to easily change persistence mechanisms
without affecting the applications that access them, therefore a wide variety of database versions and
vendors should be supported by the persistence layer.

12. Multiple connections. Most organizations have more than one persistence mechanism, often from

different vendors, that need to be accessed by a single object application. The implication is that a
persistence layer should be able to support multiple, simultaneous connections to each applicable
persistence mechanism. Even something as simple as copying an object from one persistence
mechanism to another, perhaps from a centralized relational database to a local relational database,
requires at least two simultaneous connections, one to each database.

13. Native and non-native drivers. There are several different strategies for accessing a relational

database, and a good persistence layer will support the most common ones. Connection strategies

Copyright 1997-2005 Scott W. Ambler

7

include using Open Database Connectivity (ODBC), Java Database Connectivity (JDBC), and native
drivers supplied by the database vendor and/or a third party vendor.

14. Structured query language (SQL) queries. Writing SQL queries in your object-oriented code is a

flagrant violation of encapsulation – you’ve coupled your application directly to the database schema.
However, for performance reasons you sometimes need to do so. Hard-coded SQL in your code should
be the exception, not the norm, an exception that should be well-justified before being allowed to
occur. Anyway, your persistence layer will need to support the ability to directly submit SQL code to a
relational database.

Persistence layers should allow application developers to concentrate on what they do best, develop
applications, without having to worry about how their objects will be stored. Furthermore, persistence
layers should also allow database administrators (DBAs) to do what they do best, administer databases,
without having to worry about accidentally introducing bugs into existing applications. With a well-built
persistence layer DBAs should be able to move tables, rename tables, rename columns, and reorganize
tables without affecting the applications that access them. Nirvana? You bet. My experience is that it is
possible to build persistence layers that fulfill these requirements, in fact the design is presented below.

Copyright 1997-2005 Scott W. Ambler

8

5. The Design of a Persistence Layer
In this section I will present the design of a robust persistence layer. In a later section I will discuss the
implementation issues associated with this design.

5.1 Overview of the Design
Figure 5 presents a high-level design (Ambler, 1998b) of a robust persistence layer and Table 2 describes
each class in the figure. An interesting feature of the design is that an application programmer only needs to
know about the following classes to make their objects persistent: PersistentObject, the PersistentCriteria
class hierarchy, PersistentTransaction, and Cursor. The other classes are not directly accessed by
application development code but will still need to be developed and maintained to support the “public”
classes.

PersistentObject {abstract}

+save()
+retrieve()
+delete()

-isProxy : Boolean
-isPersistent : Boolean
-timeStamp : DateTime

PersistentCriteria {abstract}

+addSelectXXX()
+addOrCriteria()
+perform()

-areSubclassesIncluded : Boolean
-forClass : Class

PersistentTransaction

+processTransaction()
+retry()
+addTransaction()
+addSaveObject()
+addRetrieveObject()
+addDeleteObject()
+addCriteria()
-attempt()
-rollback()
-commit()

-tasks : Collection

Cursor

+nextObjects()
+nextProxies()
+nextRows()
+previousObjects()
+previousProxies()
+previousRows()
-$defaultSize()

-size : Integer
PersistenceBroker

+saveObject()
+retrieveObject()
+deleteObject()
+processCriteria()
+processTransaction()
+processSql()
-connectTo()
-disconnectFrom()
-retrieveClassMaps()

-$singleInstance : Object
-connections : Collection PersistenceMechanism {abstract}

+$open()
+open()
+close()
+isOpen()

-connection : Connection
-name : String

ClassMap

+getInsertSqlFor()
+getDeleteSqlFor()
+getUpdateSqlFor()
+getSelectSqlFor()

-name : String

SqlStatement {abstract}

+buildForObject()
+buildForCriteria()
+asString()

-statementComponents : Collection

0..n

1..1creates

0..n

0..n

0..n

0..1

1..n

1..1

maps $

1..1

created from

1..1

processed by

1..1

processed by

1..1

processed by

0..n

uses

1..1

0..nconnects to

Figure 5. Overview of the design for a persistence layer.

Copyright 1997-2005 Scott W. Ambler

9

Class Description
ClassMap A collection of classes that encapsulate the behavior needed to map classes to

relational tables.
Cursor This class encapsulates the concept of a database cursor.
PersistenceBroker Maintains connections to persistence mechanisms, such as relational databases

and flat files, and handles the communication between the object application
and the persistence mechanisms.

PersistentCriteria This class hierarchy encapsulates the behavior needed to retrieve, update, or
delete collections of objects based on defined criteria.

PersistenceMechanism A class hierarchy that encapsulates the access to flat files, relational databases,
and object-relational databases. For relational databases this hierarchy wraps
complex class libraries, such as Microsoft’s ODBC (open database
connectivity) or Java’s JDBC (Java database connectivity), protecting your
organization from changes to the class libraries.

PersistentObject This class encapsulates the behavior needed to make single instances
persistent and is the class that business/domain classes inherit from to become
persistent.

PersistentTransaction This class encapsulates the behavior needed to support transactions, both flat
and nested, in the persistence mechanisms.

SqlStatement This class hierarchy knows how to build insert, update, delete, and select SQL
(structured query language) statements based on information encapsulated by
ClassMap objects.

Table 2. The classes and hierarchies of the persistence layer.

The classes represented in Figure 5 each represent cohesive concepts, in other words each class does one
thing and one thing well. This is a fundamental of good design. PersistentObject encapsulates the
behavior needed to make a single object persistent whereas the PersistentCriteria class hierarchy
encapsulates the behaviors needed to work with collections of persistent objects. Furthermore, I’d like to
point out that the design presented here represents my experiences building persistence layers in Java, C++,
and Smalltalk for several problem domains within several different industries. This design works and is
proven in practice by a wide range of applications.

5.1.1 The PersistentObject Class
Figure 6 shows the design of two classes, PersistentObject and OID. PersistentObject encapsulates the
behavior needed to make a single object persistent and is the class from which all classes in your
problem/business domain inherit from. For example, the business class Customer will either directly or
indirectly inherit from PersistentObject. The OID class encapsulates the behavior needed for object IDs,
called persistent IDs in the CORBA (Common Object Request Broker) community, using the HIGH/LOW
approach for ensuring unique identifiers. Details of the HIGH/LOW OID are presented at
www.agiledata.org.

Copyright 1997-2005 Scott W. Ambler

10

PersistentObject {abstract}

+save()
+retrieve()
+delete()

-isProxy : Boolean
-isPersistent : Boolean
-timeStamp : DateTime

OID

+value()

-highValue : Long
-lowValue : Integer

1..1

0..1

identifies

Figure 6. The design of PersistentObject and OID.

As you can see, PersistentObject is fairly simple. It has three attributes, isProxy, isPersistent, and
timeStamp which respectively indicate whether or not an object is a proxy, if it was retrieved from a
persistence mechanism, and the timeStamp assigned by the persistence mechanism for when it was last
accessed by your application. Proxy objects include only the minimal information needed for the system
and the user to identify the object, therefore they reduce network traffic as they are smaller than the full
objects. When the “real” object is needed the proxy is sent the retrieve() message which refreshes all of the
object’s attributes. Proxies are used when the user is interested in a small subset of the objects that would
be the result of a retrieval, often the case for a search screen or simple list of objects. The attribute
isPersistent is important because an object needs to know if it already exists in the persistence mechanism
or if it was newly created, information that is used to determine if an insert or update SQL statement needs
to be generated when saving the object. The timeStamp attribute is used to support optimistic locking in
the persistence mechanism. When the object is read into memory its timeStamp is updated in the
persistence mechanism. When the object is subsequently written back the timeStamp is first read in and
compared with the initial value – if the value of timeStamp has changed then another user has worked with
the object and there is effectively a collision which needs to be rectified (typically via the display of a
message to the user).

PersistentObject implements three methods – save(), delete(), and retrieve() – messages which are sent to
objects to make them persistent. The implication is that application programmers don’t need to have any
knowledge of the persistence strategy to make objects persistent, instead they merely send objects messages
and they do the right thing. This is what encapsulation is all about.

PersistentObject potentially maintains a relationship to an instance of OID, which is done whenever object
IDs are used for the unique keys for objects in the persistence mechanism. This is optional because you
don’t always have the choice to use object IDs for keys, very often you are forced to map objects to a legacy
schema. The need to map to legacy schemas is an unfortunate reality in the object-oriented development
world, something that we’ll discuss later in this white paper we look at how the map classes are
implemented. Anyway, you can easily have PersistentObject automatically assign object IDs to your
objects when they are created if you have control over your persistence schema.

5.1.2 The PersistentCriteria Class Hierarchy
Although PersistentObject encapsulates the behavior needed to make single objects persistent, it is not
enough because we also need to work with collections of persistent objects. This is where the
PersistentCriteria class hierarchy of Figure 7 comes in – it supports the behavior needed to save, retrieve,
and delete several objects at once.

Copyright 1997-2005 Scott W. Ambler

11

PersistentCriteria {abstract}

+addSelectXXX()
+addOrCriteria()
+perform()

-areSubclassesIncluded : Boolean
-forClass : Class

SelectionCriteria {abstract}

+asSqlClause()

-attributeName : String
-value : Object

0..n

XXXCriteria {abstract}

+asSqlClause()

UpdateCriteria

+perform()
+addAttribute()

-attributeValues : Collection

InsertCriteria

+markForDeletion()
+permanentlyDelete()

RetrieveCriteria

+asCursor()
+asProxies()
+asObjects()
+asRecords()

-returnType : Type

0..1 creates

0..1creates
Cursor

0..1

creates

Figure 7. The PersistentCriteria class hierarchy.

PersistentCriteria is an abstract class, one that captures behavior common to its subclasses but one that is
not directly instantiated, which allows you to define selection criteria that limits the scope to a small subset
of objects. The addSelectXXX() method of PersistentCriteria represents a collection of methods that take
two parameters, an attribute of a class and a value, and create corresponding instances of subclasses of
SelectionCriteria. The SelectionCriteria class hierarchy encapsulates the behavior needed to compare a
single attribute to a given value. There is one subclass for each basic type of comparison (equal to, greater
than, less than, less than or equal to, and greater than or equal to). For example, the method
addSelectGreaterThan() method creates an instance of GreaterThanCriteria, and addSelectEqualTo()
creates an instance of EqualToCriteria.

The forClass attribute of PersistentCriteria indicates the type of objects being dealt with, perhaps
Employee or Invoice objects, and the isSubclassesIncluded attribute indicates whether or not the criteria
also applies to subclasses of forClass, effectively supporting inheritance polymorphism. The combination
of these two attributes and the addSelectXXX() methods are what makes it possible to define that you want
to work with instances of the Person class and it subclasses where their first names begin with the letter ‘J’
(through wild card support) that were born between June 14th, 1966 and August 14th 1967.

The class RetrieveCriteria supports the retrieval of zero or more objects, proxy objects, rows, or a cursor
because we want to be able to retrieve more than just objects: Proxies are needed to reduce network traffic,
rows are needed because many reporting class libraries want collections of rows (not real objects) as
parameters, and cursors allow you to deal with small subsets of the retrieval result set at a time increasing
the responsiveness of your application. The Cursor class will be discussed later.

DeleteCriteria supports the deletion of several objects at once. This robust class supports both marking
objects as deleted, my preferred approach, and actually deleting of them (perhaps to clean up the database
and/or for archiving). To mark objects as deleted the instance of DeleteCriteria creates an instance of
UpdateCriteria and simply updates a deletionDateTime or isDeleted column within the appropriate
tables.

The class UpdateCriteria is used to update one or more attributes within a collection of classes
simultaneously. The perform() method basically creates an instance of RetrieveCriteria to obtain the
objects, loops through them to assign the new values to the attributes, and then sends the save() message to

Copyright 1997-2005 Scott W. Ambler

12

each object to write it back to the persistence mechanism. You need to retrieve the objects so that you can
use the appropriate setter methods to update the attributes – the setter methods will ensure that the
applicable business rules are followed when the new values are set. Remember, objects encapsulate
business rules which are often not reflected in the database, therefore you cannot simply generate a single
SQL statement to update all objects at once.

The typical life cycle of a persistent criteria object is to define zero or more selection criteria for it and then
to have the object run itself (it submits itself to the single instance of PersistenceBroker) via the perform()
method. Instances of SelectionCriteria are related to one another within a single instance of
PersistentCriteria via the use of “AND logic.” To support OR logic the orCriteria() method takes an
instance of PersistentCriteria as a parameter and effectively concatenates the two criteria together. As you
would guess, this makes it possible to generate very complex criteria objects.

The advantage of this class hierarchy is that it allows application programmers to retrieve, delete, and
update collections of objects stored within a persistence mechanism without having any knowledge of the
actual schema. Remember, the SelectionCriteria class deals with the attributes of objects, not with
columns of tables. This allows application programmers to build search screens, lists, and reports that
aren’t coupled to the database schema, and to archive information within a persistence mechanism without
direct knowledge of its design. Once again, our persistence layer supports full encapsulation of the
persistence mechanism’s schema.

5.1.3 The Cursor Class
Figure 8 shows the design of the Cursor class which encapsulates the basic functionality of a database
cursor. Cursors allow you to retrieve subsets of information from your persistence mechanism at a single
time. This is important because a single retrieve, supported by the RetrieveCriteria class described last
month, may result in hundreds or thousands of objects coming across the network – by using a cursor you
can retrieve this result set in small portions one at a time. Cursor objects allow you to traverse forward and
backward in the result set of a retrieval (most databases support forward traversal but may not support
reverse traversal due to server buffering issues), making it easy to support users scrolling through lists of
objects. The Cursor class also supports the ability to work with rows (records) from the database, proxy
objects, and full-fledged objects.

Cursor

+nextObjects()
+nextProxies()
+nextRows()
+previousObjects()
+previousProxies()
+previousRows()
-$defaultSize()

-size : Integer

Figure 8. The Cursor class.

Cursor has an instance attribute size, whose value is typically between one and fifty, which indicates the
maximum number of rows, objects, or proxies that will be brought back at a single time. As you would
expect, the class/static method defaultSize() returns the default cursor size, which I normally set at one.
Note how a getter method for the default size is used, not a constant (static final for the Java programmers

Copyright 1997-2005 Scott W. Ambler

13

out there). By using a getter method to obtain the constant value I leave open the opportunity for
calculating the value, instead of just hardcoding it as a constant. I argue that the principle of information
hiding pertains to constants as well as variables, therefore I use getter methods for constants to make my
code more robust.

5.1.4 The PersistentTransaction Class
The fourth and final class that your application programmers will directly deal with – the others were
PersistentObject, PersistentCriteria, and Cursor – is PersistentTransaction, shown in Figure 9.
PersistentTransaction instances are made up of tasks to occur to single objects, such as saving, deleting,
and retrieving them, as well as instances of PersistentCriteria and other PersistentTransaction objects.

PersistentTransaction

+processTransaction()
+retry()
+addTransaction()
+addSaveObject()
+addRetrieveObject()
+addDeleteObject()
+addCriteria()
-attempt()
-rollback()
-commit()

-tasks : Collection

Figure 9. The PersistentTransaction class.

The typical life cycle of a transaction is to create it, add a series of tasks, send it the processTransaction()
message, and then either commit the transaction, rollback the transaction, or retry the transaction. You
would commit the transaction, make the tasks of the transaction permanent, only if the
processTransaction() method indicated that the transaction was successful. Otherwise, you would either
rollback the transaction, basically give up trying the transaction, or retry the transaction if it’s possible that
locks in your persistence mechanism have been removed (making it possible to succefully run the
transaction). The ability to commit and rollback transactions is important – because transactions are atomic,
either the succeed or they fail – you must be able to either completely back out of the transaction by rolling
it back or completely finish the transaction by committing it.

Tasks are processed in the order that they are added to an instance of PersistentTransaction. If a single
task fails, perhaps it is not possible to delete an indicated object, then processing stops at that task and the
processTransaction() method returns with a failure indication.

When a PersistentTransaction instance is added to another transaction, via invoking the
addTransaction() method, it is considered to be nested within the parent transaction. Child transactions
can be successful, be committed, even when the parent transaction fails. When a nested transaction is
attempted, if it is successful it is automatically committed before the next task in the list is attempted,
otherwise if it fails the parent transaction stops with a failure indication.

Copyright 1997-2005 Scott W. Ambler

14

An advanced version of this class would allow for non-persistence mechanism tasks to be included in a
transaction. For example, perhaps it’s important to run a transaction only on days where the moon is full,
therefore one of your transaction steps would be to send the message isFull() to an instance of the Moon
class, if isFull() returns true then the transaction continues, otherwise it fails.

5.1.5 The PersistenceBroker Class
In many ways the PersistenceBroker class, show in Figure 10, is the key to the persistence layer. This
class follows the Singleton design pattern in that there is only one instance of it in the object space of the
application. During run time PersistenceBroker maintains connections to persistence mechanisms
(databases, files, …) and manages interactions with them. PersistenceBroker effectively acts as a go
between for the classes PersistentObject, PersistentCriteria, and Transaction as it is where instances of
these classes submit themselves to be processed. PersistenceBroker interacts with the SqlStatement class
hierarchy, map classes, and PersistenceMechanism class hierarchy.

PersistenceBroker

+saveObject()
+retrieveObject()
+deleteObject()
+processCriteria()
+processTransaction()
+processSql()
-connectTo()
-disconnectFrom()
-retrieveClassMaps()

-$singleInstance : Object
-connections : Collection

Figure 10. The PersistenceBroker class.

When you start your application one of the initiation tasks is to have PersistenceBroker read in the
information needed to create instances of the map classes (ClassMap, AttributeMap, …) from your
persistence mechanism. PersistenceBroker then buffers the map classes in memory so they can be used to
map objects into the persistence mechanism.

An important feature of PersistenceBroker is the processSql() method, which you can use to submit
hardcoded SQL (structured query language) statements to the persistence. This is a critical feature because
it allows you to embed SQL in your application code – when performance is of critical importance you may
decide to override the save(), delete(), and/or retrieve() methods inherited from PersistentObject and
submit SQL directly to your persistence mechanism. Although this always sounds like a good idea at the
time, it is often a futile effort for two reasons: first, the resulting increase in coupling between your
application and the persistence schema reduces the maintainability and extensibility of your application;
second, when you actually profile your application to discover where the processing is taking place it is
often in your persistence mechanism, not in your persistence layer. The short story is that to increase the
performance of your application your time is better spent tweaking the design of your persistence schema,
not your application code.

Copyright 1997-2005 Scott W. Ambler

15

5.1.6 The PersistenceMechanism Class Hierarchy
The PersistenceMechanism class hierarchy, shown in Figure 11, encapsulates the behaviors of the various
kinds of persistence mechanisms. Although support for object-relational databases and files is shown here,
we’re concentrating on mapping objects to relational databases. Flat files in general provide less
functionality than relational databases, basically the sequential reading and writing of data, whereas object-
relational databases provide more.

The class method (static method in Java and C++) open() is effectively a constructor method that takes as a
parameter the name of a persistence mechanism to connect to, answering back the corresponding instance of
PersistenceMechanism.

PersistenceMechanism {abstract}

+$open()
+open()
+close()
+isOpen()

 connection : Connection
 name : String

ObjectRelational
Database

{abstract}

FlatFile
{abstract}

RelationalDatabase {abstract}

+processSql()
+getClauseStringXXX()

VendorADatabase
{abstract}

VendorBDatabase
{abstract}

Figure 11. The PersistenceMechanism class hierarchy.

The getClauseStringXXX() of RelationalDatabase represents a series of getter methods that return strings
representing a portion of a SQL statement clause (this information is used by the SqlStatement class
hierarchy). Examples of XXX include: Delete, Select, Insert, OrderBy, Where, And, Or, Clause,
EqualTo, and Between. Often there will be two versions of each method, for example And really needs an
getClauseStringAndBegin() method that returns the string ‘AND(‘ and getClauseStringAndEnd() which
returns the string ‘)’ in order to build a complete AND clause within an SQL statement. These methods are
invoked by instances of the SqlStatement class hierarchy so that they may take advantage of the unique
features of each kind of relational database.

Copyright 1997-2005 Scott W. Ambler

16

RelationalDatabase supports the ANSI standard SQL clauses, whereas its subclasses will override the
appropriate methods to support their own unique extensions to ANSI SQL. This class, and its subclasses,
wrap complex class libraries such as Microsoft’s ODBC (open database connectivity) or Java’s JDBC (Java
database connectivity), protecting your organization from changes to the class libraries. The method
processSQL() takes as input a string representing an SQL statement and returns either a result set of zero or
more rows or an error indicating a problem. This method is invoked only by PersistenceBroker, which
maintains connections to your persistence mechanisms, and not by your application code which knows
nothing about this class hierarchy (nor should it).

5.1.7 The Map Classes
Figure 12 presents the class diagram for the ClassMap component, a collection of classes that encapsulate
the behavior needed to map objects to persistence mechanisms. The design is geared toward mapping
objects to relational databases, although you can easily enhance it to support other persistence mechanisms
such as flat files and object-relational databases.

ClassMap

+getInsertSqlFor()
+getDeleteSqlFor()
+getUpdateSqlFor()
+getSelectSqlFor()

-name : String

UniDirectionalAssociationMap

-cardinality : Integer
-isMust : Boolean
-isSaveAutomatic : Boolean
-isDeleteAutomatic : Boolean
-isRetrieveAutomatic : Boolean

AttributeMap

+isProxy()
+columnName()
+asSqlSaveValue()

-name : String

ProxyAttributeMa
p

+isProxy()

SqlStatement

{abstract}

ColumnMap

+fullyQualifiedName(
)

-name : String
-isKeyColumn : Boolean
-type : String

TableMap

+fullyQualifiedName() : String
-name : String

DatabaseMap

-name : String
-vendor : String
-version : String

1..
n

1..
n

1..
n

1..
n

1..
1

maps
to

1..
n

1..
1

implemented
by

0..n

2

for

0..
n

buffer
s

0..
1

0..
n

superclas
s

subclas
s

Figure 12. The ClassMap component.

Let’s start at the ClassMap class, instances of which encapsulate the behavior needed to map instances of a
given class to a relational database. If instances of the Customer class are persistent then there would be
ClassMap object which maps Customer objects into the database. If instances of a class are not persistent,
for examples instances of the class RadioButton (a user interface widget), then there will not be an instance
of ClassMap for that class.

ClassMap objects maintain a collection of AttributeMap objects which may map an attribute to a single
column in a relational table. AttributeMap objects map simple attributes such as strings and numbers that
are stored in your database, or are used to represent collections to support instances of the
UniDirectionalAssociationMap class (more on this in a minute). AttributeMap objects know what
ColumnMap objects they are associated to, which in turn know their TableMap and DatabaseMap

Copyright 1997-2005 Scott W. Ambler

17

objects. Instances of these four classes are used to map an attribute of an object to a table column within a
relational database.

A ProxyAttributeMap object is used to map a proxy attribute, which is an attribute that is needed to build
the proxy version of an object. Proxy objects have just enough information to identify the real object that it
represents, forgoing the values of attributes which require significant resources such as network bandwidth
and memory. The ProxyAttributeMap class is needed to support the ability for PersistentCriteria
objects and Cursor objects to automatically retrieve proxies from the database.

The class UniDirectionalAssociationMap encapsulates the behavior for maintaining a relationship
between two classes. When a relationship is bi-directional, for example a Student object needs to know the
courses that it takes and a Course object needs to know the students taking it, then you will need to
maintain a UniDirectionalAssociationMap for each direction of the relationship. You could attempt to
develop a BiDirectionalAssociationMap class if you wish, but when you consider the complexities of
doing so you’ll recognize that using two instances of UniDirectionalAssociationMap is much easier. The
map maintains a relationship between two classes, and includes knowledge of whether or not the second
class should be saved, deleted, or retrieved automatically when the first class is, effectively simulating
triggers in your OO application (removing the need to maintain them in your database if you wish to do so).

The implemented by association between UniDirectionalAssociationMap and AttributeMap reveals the
most interesting portion of this component – sometimes AttributeMap objects are used to represent a
collection attribute to maintain a one-to-many association. For example, because a student takes one or
more courses there is a one-to-many association from the Student class to the Course class. To maintain
this association in your object application the Student class would have an instance attribute called courses
which would be a collection of Course objects. Assuming the isRetrieveAutomatic attribute is set to true,
then when a Student object is retrieved all of the courses that the student takes would be retrieved and
references to them would be inserted into the collection automatically. Similar to defining triggers in
relational databases, you want to put a lot of thought into the triggers that you define using the
isSaveAutomatic, isRetrieveAutomatic, and isDeleteAutomatic attributes of
UniDirectionalAssociationMap.

Why do you need these mapping classes? Simple, they are the key to encapsulating your persistence
mechanism schema from your object schema (and vice versa). If your persistence mechanism schema
changes, perhaps a table is renamed or reorganized, then the only change you need to make is to update the
map objects, which as we’ll see later are stored in your database. Similarly, if you refactor your application
classes then the persistence mechanism schema does not need to change, only the map objects. Naturally, if
new features are added requiring new attributes and columns, then both schemas would change, along with
the maps, to reflect these changes.

For performance reasons instances of ClassMap maintain a collection of SqlStatement objects, buffering
them to take advantage of common portions of each statement. For similar reasons, although I don’t show
it, ClassMap should also maintain a collection of Database Map objects that SqlStatement objects use to
determine the proper subclass of RelationalDatabase, for example Oracle8, to obtain the specific string
portions to build themselves. Without this relationship the SqlStatement objects need to traverse the
relationships between the map classes to get to the right subclass of RelationalDatabase.

There are two interesting lessons to be learned from the class diagram in Figure 12. First, is the cardinality
of “2” used on the association between ClassMap and UniDirectionalAssociationMap – I rarely indicate
a maximum cardinality on an association, but this is one of the few times that a maximum is guaranteed to
hold (there will only ever be two classes involved in a uni-directional association). The modeling of
maximums, or minimums for that matter, is generally a bad idea because they will often change, therefore
you don’t want to develop a design that is dependent on the maximum. Second, recursive relationships are
one of the few times that I use roles in an association – many people find recursive relationships confusing,

Copyright 1997-2005 Scott W. Ambler

18

such as the one that ClassMap has with itself, so you want to provide extra information to aid them in their
understanding.

5.1.8 The SqlStatement Class Hierarchy
Figure 13 presents the SqlStatement class hierarchy which encapsulates the ability to create SELECT,
INSERT, UPDATE, and DELETE structured query language (SQL) statements. As you would expect, each
subclass knows how to build itself for a given object or instance of PersistentCriteria. For example,
SelectSqlStatement objects will be created to retrieve a single Customer object, via invoking the
retrieve() method on the object, or by creating an instance of the class RetrieveCriteria, a subclass of
PersistentCriteria, and invoking the perform() method on it.

SqlStatement {abstract}

+buildForObject()
+buildForCriteria()
+asString()

-statementComponents : Collection

SelectSqlStatement

+buildForObject()
+buildForCriteria()

DeleteSqlStatement

+buildForObject()
+buildForCriteria()

InsertSqlStatement

+buildForObject()
+buildForCriteria()

UpdateSqlStatement

+buildForObject()
+buildForCriteria()

Figure 13. The SqlStatement class hierarchy.

As we saw earlier the RelationalDatabase class hierarchy encapsulates the specific flavor of SQL
supported by each database vendor/version (although SQL is a standard, every vendor supports its own
unique extensions that we want to automatically use). Instances of SqlStatement collaborate with instances
of ClassMap to determine the subclass of RelationalDatabase from which to retrieve the portions of SQL
clauses to build itself.

The attribute statementComponents is a collection of strings that can be reused for the single objects of a
given class. For example, the attribute list of an INSERT statement does not change between instances of
the same class, nor does the INTO clause.

Copyright 1997-2005 Scott W. Ambler

19

6. Implementing The Persistence Layer
There are several issues that you need to be aware of with persistence layers if you wish to be successful.
These issues are:
? Buying versus building the persistence layer
? Concurrency, objects, and row locking
? Development language issues
? A potential development schedule

6.1 Buy Versus Build
Although this white paper is aimed at people who are building a persistence layer, the fact is that building
and maintaining a persistence layer is a complex task. My advice is that you shouldn’t start the
development of a persistence layer it if you can’t finish through. This includes the maintenance and support
of the persistence layer once it is in place.

If you decide that you either can’t or don’t want to build a persistence layer
then you should consider purchasing once. In my third book, Process Patterns
(Ambler, 1998b), I go into detail about the concept of a feasibility study, which
looks at the economic, technical, and operational feasibility of something. The
basic idea is that your persistence layer should pay for itself, should be possible
to build/buy, and should be possible to be supported and maintained over time
(as indicated previously).

A feasibility study
should look at the
economic, technical,
and operational
feasibility of
building/buying a
persistence layer.

The good news is that there are a lot of good persistence products available on the market, and I have
provided links to some of them at http://www.ambysoft.com/persistenceLayer.html to provide an initial
basis for your search. Also, I have started, at least at a high level, a list of requirements for you in this
document for your persistence layer. The first thing that you need to do is flesh them out and then prioritize
them for your specific situation.

6.2 Concurrency, Objects, and Row Locking
For the sake of this white paper concurrency deals with the issues involved with allowing multiple people
simultaneous access to the same record in your relational database. Because it is possible, if you allow it,
for several users to access the same database records, effectively the same objects, you need to determine a
control strategy for allowing this. The control mechanism used by relational databases is locking, and in
particular row locking. There are two main approaches to row locking: pessimistic and optimistic.

1. Pessimistic locking. An approach to concurrency in which an item is locked in the persistence

mechanism for the entire time that it is in memory. For example, when a customer object is edited a
lock is placed on the object in the persistence mechanism, the object is brought into memory and
edited, and then eventually the object is written back to the persistence mechanism and the object is
unlocked. This approach guarantees that an item won’t be updated in the persistence mechanism while
the item is in memory, but at the same time is disallows others to work with it while someone else does.
Pessimistic locking is ideal for batch jobs that need to ensure consistency in the data that they write.

2. Optimistic locking. An approach to concurrency in which an item is locked in the persistence

mechanism only for the time that it is accessed in the persistence mechanism. For example, if a
customer object is edited a lock is placed on it in the persistence mechanism for the time that it takes to
read it in memory and then it is immediately removed. The object is edited and then when it needs to
be saved it is locked again, written out, then unlocked. This approach allows many people to work with
an object simultaneously, but also presents the opportunity for people to overwrite the work of others.
Optimistic locking is best for online processing.

Copyright 1997-2005 Scott W. Ambler

20

Yes, with optimistic locking you have an overhead of determining whether or not the record has been
updated by someone else when you go to save it. This can be accomplished via the use of a common
timestamp field in all tables: When you read a record you read in the timestamp. When you go to write the
record you compare the timestamp in memory to the one in the database, if they are the same then you
update the record (including the timestamp to the current time). If they are different the someone else has
updated the record and you can’t overwrite it (therefore displaying a message to the user).

6.3 Development Language Issues
The design as presented in this paper requires something called reflection, the ability to work with objects
dynamically at run time. Reflection is needed to dynamically determine the signatures of, based on the meta
data contained in the map classes, getter and setter methods and then to invoke them appropriately.
Reflection is built into languages such as Smalltalk and Java (at least for JDK 1.1+) but not (yet) in C++.
The result is that in C++ you need to code around the lack of reflection, typically by moving collections of
data between the business/domain layer and the persistence layer in a structured/named approach. As you
would expect, this increases the coupling between your object schema and your data schema, although still
provides you with some protection.

Copyright 1997-2005 Scott W. Ambler

21

6.4 A Development Schedule
If you intend to build a persistence layer, here is one potential schedule that you may choose to follow:

Milestone Tasks to Perform
1. Implement basic

CRUD behavior.
? Implement PersistentObject.
? Implement connection management in PersistenceBroker.
? Implement map classes (at least the basics) with the meta data being read

from tables where the data is input manually.
? Implement basics of the SqlStatement hierarchy for a single object.
? Implement the PersistenceMechanism hierarchy for the database(s) that

need to be supported within your organization.
2. Implement support

for Associations.
? Implement the UniDirectionalAssociationMap class.
? The SqlStatement hierarchy will need to be updated to reflect the additional

complexity of building SQL code to support associations.
3. Implement support

for
PersistentCriteria.

? Implement the PersistentCriteria hierarchy, typically starting with
RetrieveCriteria to support search screens and reports.

? Update PersistenceBroker to process PersistentCriteria objects.
4. Implement support

for cursors,
proxies, and
records.

? Add ProxyAttributeMap.
? Add Cursor class.
? Add Record class (if your language doesn’t already support it).
? Add Proxy class (if your language doesn’t already support it).
? Modify PersistenceBroker to hand back objects, rows, proxies, or records

when processing PersistentCriteria objects.
5. Implement an

administration
application.

? See section 8.

6. Implement
transactions.

? Implement the Transaction class.
? Modify PersistenceBroker.

I always suggest starting simple by supporting a single database, and then if needed support multiple
databases simultaneously.

Steps 2 through 6 could be done in any order depending on your priorities.

7. Doing a Data Load
In this section I will discuss the issues involved with loading data into your object-oriented application.
Data loads are a reality of system development: you need to convert a legacy database to a new version;
you need to load testing/development objects from an external data source; or you need to perform regular
loads, potentially in real time, of data from non-OO and/or external systems. I begin by reviewing the
traditional loading techniques, and then present one that is sensible for OO applications.

7.1 Traditional Data Loading Approaches
The traditional approach to data loading, shown in Figure 14, is to write a program to read data in from the
source database, cleanse it, then write it out to the target database. Cleansing may range from simple
normalization of data, to single field cleansing such as converting two-digit years to four-digit years, to
multi-field cleansing in which the value in one field implies the purpose of another field (yes, this would be

Copyright 1997-2005 Scott W. Ambler

22

considered incredibly bad design within the source data, but it is the norm in many legacy databases).
Referential integrity, the assurance that all references within a record to other records do in fact refer to
existing records, is also coded in the data loading program.

Source
Data

Target
Data

Data
Loader

Figure 14. The traditional approach to loading data.

There are several problems with this approach. First and foremost, the target data is no longer encapsulated
– if the schema of your persistence mechanism changes then you will need to change your data loader code.
Granted, this can be alleviated by data loading tools that operate on meta data (they effectively have a
persistence layer for structured technology). Second, your data loader is likely implementing a significant
portion of the logic that is already encapsulated in your business objects. Your business objects will not be
coded to fix problems in the legacy source data, but they will be coded to ensure consistency of your
objects, including all referential integrity issues. The bottom line is that with this approach you are
programming a lot of basic behavior in two places: in your business layer where it belongs and in your data
loader where it does not. There has to be a better way.

7.2 Architected Data Loading
Figure 15 depicts an approach to data loading that is more in line with the needs of object development.
The data loader application itself will be made up of a collection of classes. First, there may be several user
interface classes, perhaps an administration screen for running the data load and a log display screen.
Second, there will be a collection of business classes specific to the data loader, classes which encapsulate
the data cleansing logic specific to the source data. You don’t want this in your normal business classes
because at some point your legacy source data is likely to go away and be replaced by the new and
improved target data. There will also be classes that encapsulate the data load process logic itself, using the
data load business classes to read the incoming data and then to create the “real” business objects for your
application based on that data. If you are not doing a complete refresh of the target data you will need to
first read the existing objects into memory, update them based on the source data, and then write them back
out.

Copyright 1997-2005 Scott W. Ambler

23

Source
Data

Target
Data

Data
Loader UI

Data Loader
Classes

Persistence
Layer

Business/
Domain Classes

Application
UI

Data Flow

Message Flow

Figure 15. An architected approach to loading data.

There are two interesting points to be made about Figure 15. First, notice how your “data loader code”
never directly accesses the source data – it goes through the persistence layer to get at the data. Second, the
data loader code could easily be removed without affecting the applications and business classes, in other
words the applications don’t know and don’t care about the source of the data that they manipulate.

There are several advantages to this approach:
? The data loader logic is decoupled from the schema for the target data, allowing you to update the

target schema as needed by your business applications without requiring an update to your data loader.
? Key business logic is encapsulated in the business classes of your application, exactly where it belongs,

enabling you to code it one place.
? Data cleansing logic is encapsulated in the business classes of your data loader, exactly where it

belongs, enabling you to code it in one place.

There is one disadvantage to this approach: expensive data loading tools that your organization has
purchased are likely not able to work within this architecture, likely based on the ancient/legacy approach of
Figure 14, causing political problems for the users of those tools.

8. Supporting the Persistence Layer
How do you support this persistence layer within your organization? First, you need to develop an
administration system that provides the ability to maintain instances of the mapping classes. This
administration system would be updated by your persistence modelers responsible for developing and
maintaining your persistence schema, and by your lead developers responsible for maintaining the object
schema of your applications. You may also choose to add a cache to your persistence layer to improve its
performance.

Copyright 1997-2005 Scott W. Ambler

24

To support the persistence layer an administration application needs to be built to maintain the instances of
the ClassMap classes, as shown in Figure 16. These objects encapsulate the behavior needed to map
objects into the persistence mechanism, including the complex relationships between the objects that make
up your application, and form the information that is stored in the data dictionary for your application. This
is the secret to a successful persistence layer: the objects stored in the data dictionary provide the behaviors
needed to map objects into the persistence mechanism(s) where they are stored. When the design of your
application or persistence mechanism schema changes you merely have to update the mapping objects
within your data dictionary, you do not have to update your application source code.

Persistence
Mechanism(s)

Data Dictionary

Persistence
Layer

Administration
Application

Persistence
Layer

Your
Application(s)

Figure 16. How the persistence mechanism works.

This approach to persistence effectively allows your database administrators (DBAs)
to do what they do best, administer databases, without forcing them to worry about
what their changes will do to existing applications. As long as they keep the data
dictionary up-to-date they can make whatever changes they need to make to the
persistence mechanism schema. Similarly, application programmers can refactor their
objects without having to worry about updating the persistence mechanism schema
because they can map the new versions of their classes to the existing schema.
Naturally when new classes or attributes are added or removed to/from an application
there will be a need for similar changes within the persistence mechanism schema.

Robust
persistence layers
protect
application
developers from
changes made by
database
administrators
and vice versa.

Copyright 1997-2005 Scott W. Ambler

25

9. Summary
The purpose of this white paper was to present a workable design for a robust persistence layer, a design
proven in practice to work. It is possible for object-oriented applications to use relational databases as
persistence mechanisms without requiring the use of embedded SQL in your application code which couples
your object schema to your data schema. Technologies such as Java Database Connectivity (JDBC) and
Microsoft’s ActiveX Database Connectivity (ADO) can be wrapped using the design presented in this white
paper, avoiding the inherent brittleness of applications whose design gives little thought to the maintenance
and administration issues associated with persistence mechanisms. Persistence within object-oriented
applications can be easy, but only if you choose to make it so.

10. About the Author
Scott W. Ambler is a senior consultant with Ambysoft Inc. Scott is the author of several books, including
The Object Primer 3rd Edition (2004), Agile Database Techniques (2003), and Agile Modeling (2002). He
has worked with OO technology since 1990 in various roles: Process Mentor, Business Architect, System
Analyst, System Designer, Project Manager, Smalltalk Programmer, Java Programmer, and C++
Programmer. He has also been active in education and training as both a formal trainer and as an object
mentor. Scott is a contributing editor with Software Development (www.sdmagazine.com). His home page
is www.ambysoft.com/scottAmbler.html.

Copyright 1997-2005 Scott W. Ambler

26

11. References and Recommended Reading

Ambler, S.W. (1998a). Building Object Applications That Work – Your Step-by-Step Handbook for
Developing Robust Systems With Object Technology. New York: SIGS Books/Cambridge University Press.
http://www.ambysoft.com/buildingObjectApplications.html

Ambler, S. W. (1998b). Process Patterns: Delivering Large-Scale Systems Using Object Technology.
New York: SIGS Books/Cambridge University Press. http://www.ambysoft.com/processPatterns.html

Ambler, S.W. (1998c). Mapping Objects To Relational Databases: An AmbySoft Inc. White Paper.
http://www.ambysoft.com/essays/mappingObjects.html

Ambler, S.W. (1998d). Persistence Layer Requirements, Software Development, January 1998, p70-71.

Ambler, S.W. (1998e). Robust Persistence Layers, Software Development, February 1998, p73-75.

Ambler, S.W. (1998f). Designing a Persistence Layer (Part 3 of 4), Software Development, March 1998,
p68-72.

Ambler, S.W. (1998g). Designing a Robust Persistence Layer (Part 4 of 4), Software Development, April
1998, p73-75.

Ambler, S.W. (1998h). Implementing an Object-Oriented Order Screen, Software Development, June
1998, p69-72.

Ambler, S.W. & Constantine, L.L. (2000a). The Unified Process Inception Phase. Gilroy, CA: CMP
Books. http://www.ambysoft.com/inceptionPhase.html.

Ambler, S.W. & Constantine, L.L. (2000b). The Unified Process Elaboration Phase. Gilroy, CA: CMP
Books. http://www.ambysoft.com/elaborationPhase.html.

Ambler, S.W. & Constantine, L.L. (2000c). The Unified Process Construction Phase. Gilroy, CA: CMP
Books. http://www.ambysoft.com/constructionPhase.html.

Ambler, S.W. (2004). The Object Primer 3rd Edition: Agile Model Driven Development With UML 2.
New York: Cambridge University Press. http://www.ambysoft.com/theObjectPrimer.html.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). A Systems of Patterns:
Pattern-Oriented Software Architecture. New York: John Wiley & Sons Ltd.

Copyright 1997-2005 Scott W. Ambler

27

Index

A

Accessor methods .. 1
Administration application............................... 23
AttributeMap ... 16

B

Buy vs. build.. 19

C

C++.. 5, 20
ClassMap ... 16
Class-type architecture....................................... 3
Client/server (C/S) architecture

and class-type architecture............................. 4
Concurrency... 19
Connection... 6
Controller/process layer..................................... 4
Cursor .. 6, 9, 12

D

Data loading... 21
Database administrators (DBAs) 7
DeleteCriteria... 11
Design overview .. 8
Development schedule..................................... 21
Domain/business layer 4

E

Encapsulation... 5
Extensibility... 6

F

Feasibility study... 19

H

HIGH/LOW approach 9

J

Java .. 5, 20
Java Database Connectivity (JDBC).................. 7

L

Locking.. 19
optimistic ... 19

pessimistic.. 19

M

Modeling pattern
layer ... 3

O

OID .. 6, 9
Open Database Connectivity (ODBC) 7
Optimistic locking.. 19

P

Persistence layer .. 4
PersistenceBroker .. 14
PersistenceMechanism..................................... 15
PersistentCriteria.. 10
PersistentObject ... 9
PersistentTransaction 13
Pessimistic locking... 19
Proxy.. 6
ProxyAttributeMap .. 17

R

Record.. 6
Referential integrity ... 22
Reflection... 20
RelationalDatabase .. 15
Requirements ... 5
RetrieveCriteria.. 11

S

Smalltalk .. 5, 20
SqlStatement .. 18
Structured Query Language (SQL) 1

T

Transaction .. 5, 9

U

UniDirectionAssociationMap 17
Unified Modeling Language (UML).................. 1
UpdateCriteria.. 11
User-interface layer.. 3

